
MASARYK UNIVERSITY

FACULTY OF INFORMATICS

} w��������
��
Æ������������ !"#$%&'()+,-./012345<yA|

OpenCL Cryptographic Library

MASTER THESIS

Bc. Martin Preisler

Brno, May 2015

Declaration

Hereby I declare, that this paper is my original authorial work, which I have
worked out by my own. All sources, references and literature used or excerpted
during elaboration of this work are properly cited and listed in complete refer-
ence to the due source.

Bc. Martin Preisler

Advisor: RNDr. Adam Rambousek

i

Acknowledgement

Hereby I would like to thank my thesis advisor RNDr. Adam Rambousek and
technical consultant Dr. Ir. Nikolaos Mavrogiannopoulos for valuable pointers,
encouragement and support.

I would also like to thank Ing. Peter Vrabec for the unique opportunity to
work on this project at Red Hat, Inc.

Last but not least, I am very grateful to Adam Preisler, Bc. Jan Štěpnička and
Red Hat, Inc. for lending me various hardware for testing.

ii

Abstract

Modern GPUs are devices with very high parallelism for a very low cost. In-
teger and logic instruction support enable us to use them for many workloads
unrelated to rendering. Cryptographic algorithms like AES or Blowfish can ben-
efit from being executed on the system’s GPU. Such execution off-loads work
from the main CPU, freeing it to do other tasks on a server system. For bulk
encryption and decryption the whole operation can often be faster as well. This
thesis describes implementation of an OpenCL library of commonly used ci-
phers — AES-ECB, AES-CTR, AES-GCM and Blowfish-ECB. Integrations of the
library with existing software are included. The library provides abstractions
that enable easy implementation of additional ciphers in the future.

iii

Keywords

OpenCL, cryptography, AES, Blowfish, ECB, CTR, GCM, CUDA, GPU Com-
pute, GPGPU

iv

Contents

1 Introduction . 1
2 Motivation . 3
3 Prior Art . 4

3.1 AES Encryption in GPU Gems 3 . 4
3.2 SSLShader . 5
3.3 Acceleration of AES Encryption on CUDA GPU 5
3.4 Bulk Encryption on GPUs . 6

4 Design . 7
4.1 Readability and Portability versus Performance 7
4.2 Choosing GPU Compute API . 7

4.2.1 CUDA . 8
4.2.2 OpenGL Compute Shaders 9
4.2.3 OpenCL . 9

4.3 Programming Language . 11
4.4 Target Platforms . 12
4.5 Symmetric Cryptography Primer 12

4.5.1 AES . 14
4.5.2 Blowfish . 14

4.6 Amdahl’s Law . 15
4.7 GPU Compute Basics . 16

5 Implementation . 18
5.1 OpenCL Abstraction . 18
5.2 GPU Architecture . 20

5.2.1 Specifics of GPU Threads 22
5.2.2 Memory Access . 23

5.3 Benchmark Suite . 24
5.4 Memory Transfer Between Host and OpenCL Device 25
5.5 Cryptographic Algorithm Context 27
5.6 Regression Testing . 29
5.7 Storage of OpenCL Kernel Source Code 29
5.8 OpenCL Memory Access . 30

v

5.9 AES-ECB . 31
5.10 AES-CTR . 33
5.11 AES-GCM . 36
5.12 Performance Comparison of AES Modes 37
5.13 Blowfish-ECB . 38

6 Performance Evaluation . 41
6.1 Optimizing Memory Access . 41
6.2 Performance Comparison Across Hardware 43

7 Integrations . 48
7.1 oclcrypto-cli . 48
7.2 OpenSSL Engine Integration . 48

8 Security Concerns . 50
9 Areas for Future Improvement . 52

9.1 Splitting up AES Block Processing 52
9.2 Interleaving Data Transfer and Processing 53
9.3 Secure Key-Store . 53
9.4 Khronos Vulkan . 54

10 Conclusion . 55
A oclcrypto README . 62
B Minimal Example Program . 65

vi

1 Introduction

GPUs advanced rapidly by adopting and optimizing 16bit floating point op-
erations. This enabled real-time 3D rendering. At first all rendering was done
using a so called fixed pipeline. With fixed pipeline developers were tied to a
limited set of functionality. As GPUs got more complex and more and more
rendering features were bolted into the fixed pipeline, there was a need to pro-
gram GPUs directly. Low-level GPU programming has been introduced. The
GPU programs were called shaders because they enabled developers to im-
plement various different shading models not available in fixed pipeline. This
led to a revolution in the graphics rendering world. Many new rendering tech-
niques were being created every month. At this stage shaders still had to fit into
a pipeline. There were two types — vertex shaders and pixel shaders.

Despite this limitation, shaders could be used to solve other problems than
just rendering — n-body simulations, heat transfer problems and others. Solv-
ing these was a hack at the time. Developers had to adapt the problem to fit
the pipeline and solving a problem meant rendering an image that represented
the result. For iterative simulations the results image was fed back as a texture
into the algorithm to advance another step. Big focus on floating point opera-
tions meant that integer processing was incomparably slow or even absent. This
was a non-issue for many problems but it made it difficult or even impossible
to solve some problems. 16-bit floating point is not a good replacement for 32-
bit integers. It was also quite difficult to implement for these GPUs. There were
many different shading languages, all quite low-level, similar to assembly. Writ-
ing a portable solution to a problem meant writing many different low-level
shaders or relying on a meta-language like NVIDIA Cg .

Cg was a collaboration between NVIDIA and Microsoft. It promised to sim-
plify development by enabling developers to write in a familiar C-like high-
level syntax that was compiled into low-level shader code. Despite focus on
NVIDIA hardware the Cg language was quite usable on many different GPUs.
In 2009 OpenGL ARB announced GLSL — an official high-level shading lan-
guage of OpenGL . Similarly, Microsoft introduced HLSL as an official high-
level shading language of DirectX. Most developers moved to either GLSL or

1

1. INTRODUCTION

HLSL and Cg was discontinued in 2012 [5]. Shader development was quite
common at this stage but using GPUs for generic problem solving was still dif-
ficult.

NVIDIA reacted to these events and started Compute Unified Device Archi-
tecture — CUDA [15]. CUDA brought a high-level C -like language, fast inte-
ger and logic instructions, and much better debugging tools to GPU Compute
developers. Two years later, OpenCL was introduced as a vendor-neutral alter-
native to CUDA. OpenCL was well received by AMD and Intel because it fi-
nally enabled GPU Compute outside NVIDIA hardware. CUDA and OpenCL
allowed developers to implement their problem solvers without having to fit
them into a rendering pipeline. At this stage GPU Compute took off and started
to be used even outside laboratories for video encoding, video compositing,
finance simulations, machine learning, and more. [9].

One of suitable tasks for GPU Compute is symmetric block cryptography.
Each block can usually be processed by a different thread which makes the
problem a perfect fit for massively parallel GPUs.

In this thesis we will explore ways to implement well-known cryptographic
algorithms like AES and Blowfish on GPU hardware. We will focus on usage
outside of a laboratory on commonly available hardware. OpenCL will be our
main tool to avoid vendor lock-in.

2

2 Motivation

A lot of processing power is spent for cryptographic operations in a typical
server workload. Processing power that may be needed for generating the con-
tent. Special instructions for many popular cryptographic algorithms are com-
monly available in modern CPUs [10]. These instructions offer tremendous
speed-up but it still costs cycles to encrypt and decrypt. In a typical headless
server environment the GPU is either idle or completely absent. In this thesis
we explore the idea to use this powerful idle hardware to lower the CPU load
and possibly speed-up encryption and decryption. Modern GPUs are cheap,
relatively energy efficient and readily available due to high consumer demand
fueled by modern computer games [22].

While there are a few projects implementing one or a few specific crypto-
graphic algorithms in either CUDA or OpenCL, we could find none that pro-
vide a stable API and is suitable for production. From our research none of
those projects reached a mature state where there are stable maintained releases
with packages available in common Linux distributions. Many were extremely
bleeding edge and optimized for one particular device and use-case, focused
solely on achieving the best performance. While this project does not aim to be
the best performing or use the lowest amount of memory, it is designed to be
portable, readable and usable.

Another motivation is to create a test bed to implement more cryptographic
algorithms in OpenCL in the future. A lot of setup code has to be written to
even safely compile an OpenCL kernel and transfer all the data. This project
should enable developers to focus on just the OpenCL kernel.

3

3 Prior Art

There are many other similar projects. In this section we summarize some of
them.

3.1 AES Encryption in GPU Gems 3

The first prior art we looked at was this chapter from a well known book about
various GPU techniques from 2007 [31]. It was released roughly at the time
when integer processing began to be available on consumer GPUs. Instead
of using CUDA or OpenCL it uses plain OpenGL low-level shaders because
CUDA was only in its infancy at the time. The researchers use new features in
NVIDIA GeForce 8 like Transform Feedback Mode and Typed Registers. AES
key schedule is done on the CPU. AES processing is implemented as a vertex
shader and as a fragment shader. Both approaches are compared with fragment
shader decisively winning in performance.

For large buffers the researchers achieved throughput of 53 MB/s with ver-
tex shader and 95 MB/s with fragment shader.

Figure 3.1: GPU Gems 3 AES throughput comparison

4

3. PRIOR ART

3.2 SSLShader

Keon Jang et al. [29] explore SSL protocol acceleration on commodity GPUs.
The paper presents a hypothesis that lack of cheap SSL hardware accelerators
may be preventing wide SSL adoption. The researchers present SSLShader — a
transparent SSL proxy. The authors show that latencies increase when using the
GPU but the throughput is high enough for the solution to be useful. In conclu-
sion the paper states that common GPUs are a viable alternative to specialized
SSL accelerator hardware and may be the driving force for wider SSL adoption
in the future.

Figure 3.2: SSLShader reported throughput

Unfortunately, there is no way to verify claims of the researchers. The soft-
ware has not been publicly released, the researchers claim on the website [21]
that they are in the process of commercializing it.

3.3 Acceleration of AES Encryption on CUDA GPU

Keisuke Iwai et al. [28] provide a concise introduction to CUDA hardware and
then explore AES acceleration on NVIDIA GTX 285. Performance of different
memory arrangements are compared, as well as different granularities — num-
ber of threads operating on one AES block. The final throughput is 4400 MB/s
measured with 256 MB plain-text size. The best performing arrangement oper-
ated on one AES block per thread and used shared memory for T-box allocation.

While those numbers are amazing, we have to keep in mind that the re-
searchers did not factor in memory transfers and other setup costs. Overlapping

5

3. PRIOR ART

data transfers is mentioned as a possible way to avoid most of memory transfer
costs.

In conclusion the researchers write that CUDA GPUs in PCs and even lap-
tops seem to be suitable cryptographic accelerators. Unfortunately, the source
code is not provided.

Figure 3.3: AES throughput comparison depending on granularity

3.4 Bulk Encryption on GPUs

In this article from 2011, Salman Ul Haq et al. [33] focus on encryption of big
buffers during transmission or storage. Therefore big latencies are tolerated
in favor of large throughput. The use-case relates to the usage of specialized
cryptographic accelerator hardware and authors suggest that modern GPUs
may be a potential replacement. ECB and CTR AES modes are implemented in
OpenCL as part of the paper.

Authors do key expansion in local memory using the GPU, which is a very
interesting and novel approach. Unfortunately no performance comparison be-
tween CPU key schedule and GPU key schedule is available.

The final solution reportedly has throughput of approximately 4000 MB/s
on ATI Radeon HD 5870.

6

4 Design

In this chapter we outline key design decisions before implementation starts.
We also briefly discuss GPU Compute and symmetric cryptography basics.

4.1 Readability and Portability versus Performance

Performance tuning is device-specific, especially with massively parallel de-
vices like GPUs. The goal of this project is not to achieve the best performance
for any particular hardware, but provide decent performance on many differ-
ent hardware configurations. That means that readability, portability and cor-
rectness are favored over small performance improvements. Device or platform
specific performance optimization should be enabled or disabled using macros.
Readability of the code is favored, functions are preferred over macros and
other preprocessor tricks, longer variable names are preferred over single let-
ter names.

The ideal result library will not require any performance considerations from
the user but test and tune everything by itself. Auto-learning performance-
sensitive variables — local work size, block size, etc. — is preferred over asking
the user to set them manually.

4.2 Choosing GPU Compute API

Before starting any design we needed to choose a GPGPU API. Prior art men-
tioned in Chapter 3 used mostly CUDA or OpenCL. We set the following critical
requirements for the API :

• cross-platform

• vendor-neutral

• patent unencumbered or at least royalty-free

7

4. DESIGN

This ruled out DirectCompute by Microsoft because it is only available on Win-
dows [6]. Three major APIs for doing general purpose computations on the
GPU remained, which we summarize in the rest of this section.

4.2.1 CUDA

CUDA from 2007 is the oldest API of the three [15]. It is NVIDIA -only and
focused on NVIDIA hardware architecture. It is very powerful, mature, cross-
platform and widely used by the industry. Many high-level libraries are offered
for CUDA, even commercial ones. Debugger and profiler tools offer high pro-
ductivity and are stable on Linux from the author’s limited testing.

Figure 4.1: CUDA nvprof GUI [17]

It is quite well researched and there is a high amount of resources available
for it on NVIDIA website [15] and elsewhere. Unfortunately it is as vendor-
locked as can be. There is only one implementation and it does not seem this
will change in the future.

8

4. DESIGN

4.2.2 OpenGL Compute Shaders

Recent graphics hardware has become extremely powerful and a strong de-
sire to harness this power for work (both graphics and non-graphics) that does
not fit the traditional graphics pipeline well has emerged. To address this, this
extension adds a new single-stage program type known as a compute pro-
gram. This program may contain one or more compute shaders which may be
launched in a manner that is essentially stateless. This allows arbitrary work-
loads to be sent to the graphics hardware with minimal disturbance to the GL
state machine.

Figure 4.2: Section from ARB_compute_shader specification [18]

The most bleeding edge of all the considered options. ARB_compute_shader
has been introduced by AMD in 2012 [18]. It uses the familiar GLSL syntax.
Unfortunately it requires an OpenGL context which may be impractical in a
headless server scenario1. That OpenGL context has to support OpenGL ver-
sion 4.2 which is too recent for practical purposes, it would lock us out of a lot
of commonly available hardware.

We could not find any profiler or debugger tools specifically for compute
shaders but GLSL tools usually can be used.

4.2.3 OpenCL

OpenCL was initially developed by Apple Inc. with contributions from AMD,
IBM, Intel, NVIDIA and Qualcomm. The specification was later submitted to
the Khronos Group which ratified and publicly released it on December 8,
2008 [12]. It is an open, royalty-free standard by the Khronos Group. Many
different companies and other members [13] participate in development of the
standard.

Fundamental concepts are similar to CUDA with differences in nomencla-
ture. OpenCL can target way more hardware than CUDA. Among other devices
OpenCL can leverage AMD, NVIDIA and Intel GPUs. Even targeting FPGAs
is possible with OpenCL. Furthermore, it is available for many operating sys-
tems — Microsoft Windows, Linux, MacOS X and even Android [12].

1. in this context, headless server is a server with no monitor, keyboard or other interfaces

9

4. DESIGN

The tooling seems less mature than with CUDA but the API is not locked
to any hardware vendor. The single biggest downside in our opinion are the
tools. We discovered gRemedy gDEBugger which looked promising. Then we
discovered that AMD bought the company behind it and renamed the product
to AMD CodeXL [2]. After downloading CodeXL we found that many of the
features are only available with AMD GPUs. It is perfectly understandable but
unfortunately made the tool unusable for this project because we lacked AMD
hardware.

Figure 4.3: AMD CodeXL [1]

NVIDIA seems to have supported OpenCL profiling and debugging in the
past, for example in the CUDA Toolkit 3.1 release [7]. Unfortunately, these old
releases are unsupported and cannot be used with new drivers. The profiler
tool was rewritten from scratch in CUDA Toolkit 5.0 and since then there is no
official OpenCL support in the profiler [8]. When attempting to profile OpenCL
code using nvvp or nvprof the tools output an error message “Warning: No

10

4. DESIGN

CUDA application was profiled, exiting”. Our attempts to find an alternative
profiler for OpenCL and NVIDIA hardware have failed.

The only profiler option for Intel hardware on Linux seems to be the Intel
VTune™ Amplifier [11]. Unfortunately, the tool is not freely available. The basic
version costs $899.

Despite difficulties with the tooling, OpenCL was chosen for this project in
the end. It is not perfect but it fits all our requirements. Its future also looks
promising with NVIDIA, AMD, Intel, and others all backing the standard.

4.3 Programming Language

The traditional language choice for a project like this is C. While the C standard
does not define any ABI, the ABIs are defined by the platform vendors. These
ABIs are kept stable for backward compatibility. The calling conventions are
simple and well known which makes it possible to call library functions from
other languages. The main drawback of C lies in low productivity when com-
pared to higher level languages. Another important drawback is that C projects
are prone to a category of security-sensitive bugs related to memory manage-
ment.

The OpenCL API is written in C but it is usable from C++ projects and bind-
ings are available for many other languages. We briefly examined PyOpenCL [30]
and Ruby-OpenCL [20]. Both bindings offer abstraction and ease of use incom-
parable to the C API — program sources can be interleaved with the main ap-
plication, data transfers are convenient and safe, OpenCL errors are reported as
exceptions. Using Python or Ruby would however prevent us from integrating
with other cryptographic libraries that are mostly written in C. While calling
Python or Ruby code from C is possible it requires a lot of boilerplate, per-
formance suffers and it opens a large category of new problems we wanted to
avoid.

In the end we chose C++11 because it felt like the right compromise between
C and a high-level scripting language. C++11 is suitable due to its high produc-
tivity, portability and low run-time performance costs. While being a relatively
new standard, compiler support is decent on all target platforms [4]. The mem-

11

4. DESIGN

ory model and other fundamental design features of C++11 are similar to C.
This makes integration with GnuTLS, OpenSSL and other libraries possible by
writing a thin opaque-pointer wrapper in C — we can use extern “C” to enforce
the cdecl calling conventions.

4.4 Target Platforms

The main goal of the library is not to be bound to any platform or hardware but
in practice we can only test on several popular platform and hardware combi-
nations. The choice of platforms and hardware was mainly driven by what we
had available. It should cover most of common hardware.

List of benchmarked configurations:

• Main Desktop : Intel i7-920, 6 GB RAM, NVIDIA GTX 460, Fedora 21

• Best Desktop : Intel i5-760, 8 GB RAM, NVIDIA GTX 580, Windows 8.1

• Laptop 1 : Intel i7-4600U, 12 GB RAM, Intel HD 4000 GPU, Fedora 21

• Laptop 2 : Intel i7-3615QM, 16 GB RAM, NVIDIA GT 650M, Windows 8.1

All benchmark data are from the Main Desktop computer unless stated other-
wise.

Unfortunately, we could not secure a consumer AMD GPU on time to test
with. Since we are not using any NVIDIA -specific features it is likely that the
project works as is with AMD GPUs or requires very small changes. To our best
knowledge the code is portable and works on Apple MacOS X but we did not
have the hardware to test that hypothesis.

4.5 Symmetric Cryptography Primer

This project will mainly focus on symmetric block ciphers because they are
widely used and can usually be parallelized. These ciphers transform plain-text
blocks into cipher-text blocks. Let us look at how the ciphers are defined.

12

4. DESIGN

EK(P) := {0, 1}k × {0, 1}n → {0, 1}n

DK(C) := {0, 1}k × {0, 1}n → {0, 1}n

EK is the encryption mapping, DK is the decryption mapping,
K is the key, P represents the plain-text, C represents the cipher-text,

k is the key-size, n is the plain-text and cipher-text size.

Figure 4.4: Formal definition of a block cipher

Observe that the size of plain-text and cipher-text matches when using sym-
metric block ciphers. For each possible key K, EK and DK are permutations
— bijective mappings. The following has to hold for the cipher to be useful:
DK(EK(P)) = P .

Symmetric block ciphers can operate in various modes. The most basic one
is ECB . In ECB, each block is encrypted separately. This is very easy to imple-
ment and relatively easy to debug. If two aligned 128bit blocks in plain-text are
exactly the same, the cipher-text blocks will also be the same. Therefore, 128bit
aligned patterns in plain-text are visible in the cipher-text.

Figure 4.5: AES-ECB reveals patterns [31]

CTR is a big upgrade over ECB security-wise. Instead of encrypting blocks,
a counter is encrypted. The counter is different for every block. Furthermore,
the counter starts from an initial value that is recommended to be different for
every operation. The resulting encrypted counter is used to XOR the plain-text
block. Two equal 128bit aligned plain-text blocks are highly unlikely to result
in exact same cipher-text blocks. Two equal plain-texts encrypted with different

13

4. DESIGN

initial counters cannot be recognized as the same from the cipher-text. The CTR
mode is widely used in practice.

GCM is very similar to CTR but adds authentication. This makes it harder
for the attacker to forge cipher-text blocks without being recognized. GCM is
widely adopted because of its performance and efficiency. It is used in TLS 1.2,
IPSec , IEEE 802.11ad and others. It is also part of NSA Suite B Cryptography.

Another important mode worth mentioning is CBC . CBC hides patterns in
plain-text quite well and is widely used in practice. When encrypting, every
block depends on a result from the previous block. This makes CBC encryption
hard to parallelize and unsuitable for this project.

4.5.1 AES

Originally called the Rijndael algorithm, it is a symmetric block cipher that can
process data blocks of 128 bits, using cipher keys with lengths of 128, 192, or
256 bits. Number of rounds depends on key size and can be 11, 13 or 15. Each
round consists of four transformations: SubBytes, ShiftRows, MixColumns and
AddRoundKey. The first and final rounds differ slightly from the other rounds.

It is the winning cipher of the AES contest [25], replacing DES as the en-
cryption standard in the US and around the world. It has a relatively fast key
schedule and utilizes a key-independent SBox . To this date no practical crypto-
analysis techniques have been found that can break AES. AES is widely used
in security protocols. It is perhaps the most popular and most researched sym-
metric block cipher in the world. We have therefore made it the main focus of
this project.

4.5.2 Blowfish

This is a symmetric-key block cipher from 1993 by Bruce Schneier [34]. It is
much older than AES. Compared to AES, Blowfish has a smaller block size
of 64bits instead of 128bits. Key size can vary from 32bits to 448bits. Impor-
tant distinction from other ciphers is a much slower key schedule. The cipher is
therefore suitable for high throughput where the key is not changed very often.

The cipher is built around the Blowfish Feistel function, which uses four

14

4. DESIGN

separate SBoxes. The SBoxes are key-dependent and have to be regenerated
whenever the key is changed.

Figure 4.6: Blowfish Feistel function [3]

4.6 Amdahl’s Law

An important theorem that allows us to argue about asymptotic speed-up when
parallelizing algorithms. Ironically, it was written to argue for the validity of
using a single processor for a large-scale computations [27]. We will frequently
use the following corollary:

S(N) =
1

(1− P) + P
N

N is the number of processors,
P is portion of the problem that is parallel,

S(N) is the speed-up.

Figure 4.7: Corollary of Amdahl’s law

In essence we reason about theoretical speed-up after adding an arbitrary
number of additional processors. Since our use-case usually involves GPUs
with hundreds of processors it is very important for the speed-up to trail off
as late as possible. An important outcome of this corollary is that we need to
parallelize as much of the problem as we can.

15

4. DESIGN

1 2 4 8 16 32 64 128 256 512 1024 2048
0.00

5.00

10.00

15.00

20.00

25.00

50% 70% 90% 95%

N

S(N)

Figure 4.8: Speed-up with different P values

In the context of this project the parallel part is the OpenCL kernel itself. The
serial part is the initialization, key schedule, kernel compilation, memory trans-
fers and de-initialization. Initialization, kernel compilation and de-initialization
are fixed costs give or take. The memory transfer takes longer the more memory
we need to move to the OpenCL device but also gets more efficient the more
memory we are moving. Key schedule varies depending on the algorithm but
is usually either fixed or depends on the key size.

We therefore observe that we get better P values and therefore better speed-
up for larger amounts of data.

4.7 GPU Compute Basics

OpenCL is the compute API we used for this project. In OpenCL, one or more
compute devices are exposed as OpenCL devices. These may be CPUs, GPUs,
FPGAs or others. Each devices has a queue that is used to schedule kernel exe-
cutions.

16

4. DESIGN

The compute task we want to solve has to be decomposed into work-items.
These work-items form a work-group. The kernel is set up to solve this work-
group when it is executed. For many common tasks a loop can easily be trans-
formed into an OpenCL kernel as long as the computations are not interdepen-
dent.

1 // C99
2 void ser ia l_mul (
3 i n t n ,
4 const f l o a t * a , const f l o a t * b ,
5 f l o a t * c)
6 {
7 f o r (i n t i = 0 ; i < n ; ++ i)
8 c [i] = a [i] * b [i] ;
9 }

10

11 // OpenCL
12 __kernel void opencl_mul (
13 __global f l o a t * a , __global f l o a t * b ,
14 __global f l o a t * c)
15 {
16 const i n t i = g e t _ g l o b a l _ i d (0) ;
17 c [i] = a [i] * b [i] ;
18 }

Figure 4.9: C99 serial code compared to OpenCL kernel code

After writing the OpenCL kernel source code we use the API to build it and
execute it on an OpenCL device we choose. The model is similar to OpenGL
and GLSL, the driver supplied by the vendor gets the high-level source code
and builds it into device specific low-level code.

17

5 Implementation

In this chapter we will focus on how we implemented the library to perform
encryption and decryption on a set of cryptographic algorithms to pass test
vectors. The resulting library is called oclcrypto.

Only very high-level optimization is done in this chapter.

5.1 OpenCL Abstraction

The first step was to write a very thin abstraction over the OpenCL C API that
would allow us to execute kernels and transfer data with ease. While OpenCL
provides a C++ API we did not believe it was suitable for this project. The
reason is that it is merely a wrapper around the C API and provides no addi-
tional functionality. Something that would query the system for available de-
vices, compile the kernels on demand and continuously check for OpenCL er-
rors was necessary.

DataBuffer

+ CLMem : cl_mem

+ size : unsigned int

+ lockRead()

+ lockWrite()

programCache

System

+ getDevice() : Device

+ getBestDevice() : Device

+ getProgramFromCache() : Program

Device

+ endianess : bool

+ CLQueue : cl_command_queue

+ CLDeviceID : cl_device_id

+ CLContext : cl_context

+ createProgram() : Program

+ destroyProgram()

+ allocateBuffer() : DataBuffer

+ deallocateBuffer()

Kernel

+ CLKernel : cl_kernel

+ name : string

+ setParameter()

+ allocateLocalParameter()

+ execute()

Program

+ CLProgram : cl_program

+ source : string

+ createKernel() : Kernel

+ destroyKernel()

Figure 5.1: OpenCL abstraction overview

The abstraction layer had to be thin enough to achieve good performance
but high-level enough to make OpenCL easy to use and safe. We did not focus

18

5. IMPLEMENTATION

on providing all features available in OpenCL. Rather, we made the abstraction
powerful just enough to serve our needs.

oclcrypto::System

The central part of the library is the oclcrypto::System class. When constructed it
queries the system for available devices and stores them in a map for later use.
It serves as a hub that keeps pointers to available resources and their usage.
It also allows its users to cache programs per device, this prevents multiple
compilations of the same OpenCL source code.

While it can be used as a singleton, it is not a true singleton. Creating mul-
tiple instances is designed to work fine and there is no static method to get the
last instance.

oclcrypto::Device

Represents one OpenCL device. This may be a GPU, FPGA, or even a CPU.
In the oclcrypto API Device owns Programs that have been compiled on

it. In turn, each Program owns Kernels which represent global functions in it.
Device itself does not do anything to avoid recompiling the same programs
all the time, this is a responsibility of the oclcrypto::System class. Devices also
allocate and deallocate buffers — represented by oclcrypto::DataBuffer.

Different OpenCL devices cannot share memory or compiled kernels. That
is why OpenCL does not allow the same kernel and data to be run on multiple
devices. Exactly one device always needs to be chosen to do the processing.

Each device has a command queue. To execute an action on it an action def-
inition has to be placed in the queue. The queue can be processed either seri-
ally or out-of-order. For our use-case we decided that the hassle of out-of-order
queue execution was not worth it. It may be something to research in the future.

oclcrypto::DataBuffer

Exposes global or constant memory data buffer on an OpenCL device to the
user. Buffers can be shared between different programs and kernels but not be-
tween different OpenCL devices.

19

5. IMPLEMENTATION

Reading and writing is achieved via a class template called DataBufferRead-
Lock or DataBufferWriteLock respectively. These templates implement a com-
mon C++ design paradigm called RAII . They automatically lock the buffer and
are designed to unlock it when they go out of scope.

oclcrypto::Program

One compiled OpenCL source file. Has one or more kernels. Kernels are the
only entry point to OpenCL programs. They take constants or DataBuffers as
input. Let us take the AES program as an example. It contains definitions of
the SBoxes and various helper functions. Then it has the ECB encryption and
decryption kernels, CTR encryption kernel and GCM encryption kernel. That
is four kernels in total in one OpenCL program.

Transferring input data, executing a kernel and transferring output data
back are all actions in the command queue of an OpenCL device.

Compiled programs cannot be transferred between devices. One OpenCL
source file has to be compiled multiple times if user wants to execute the code
on multiple devices.

5.2 GPU Architecture

Before we start implementing the algorithms we need to research how a typical
GPU works. That way we can avoid anti-patterns in OpenCL kernel design.

The main goal of a GPU is to generate graphics content. In the past this was
mainly texture mapping, image processing, polygon rasterization and geometry
transformations. This and even other problems of computer graphics involve a
lot of data being processed with the same function. For this reason GPUs are
designed to be capable of processing a lot of data in parallel.

Let us now look at how a GPU is designed. When compared to a CPU a
GPU usually has many more processors but each one of them is less powerful
than a typical CPU processor. The GPU processors tend to have relatively low
clock-speeds and usually do not have dedicated memory or instruction decoder.
They are less independent than a CPU processor. On most GPU architectures

20

5. IMPLEMENTATION

a lot of the processors are executing the same instruction with different data.
This paradigm is called SIMT. This is not very flexible but works well with typ-
ical GPU workloads. Fewer instruction decoders make the GPUs less complex,
cheaper to produce and make thread scheduling simpler. At the same time it
causes surprising issues when optimizing for performance. See Section 5.2.1 for
more details.

In the remainder of this section we will focus on NVIDIA Fermi [16] archi-
tecture, others may differ a bit but also share a lot of traits. The NVIDIA GTX
460 that we are doing most of testing on is one of the Fermi devices.

A Fermi GPU consists of several streaming multiprocessors . Each stream-
ing multiprocessor consists of 32 CUDA cores. Each core has one ALU and one
FPU. Processing happens in groups of 32 threads that are called warps in the
CUDA terminology. If processing in less than 32 threads is scheduled the sched-
uler spins up 32 threads and some of them are executing instructions on dummy
data. Dummy data is filtered and thrown away when processing finishes.

21

5. IMPLEMENTATION

Dispatch Unit

Warp Scheduler

Instruction Cache

Dispatch Unit

Warp Scheduler

Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

SFU

SFU

SFU

SFU

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Core

Register File (32,768 x 32-bit)

Figure 5.2: High-level diagram of NVIDIA Fermi [16]

5.2.1 Specifics of GPU Threads

GPU threads are very lightweight when compared to CPU threads but they are
also less flexible. On a CPU each thread may do completely different instruc-
tions. On a GPU any instruction divergence can slow the entire execution down
a lot. In the example in Figure 5.3 all of the threads will process the floating
point add section but only one thread will actually use the data. The data from

22

5. IMPLEMENTATION

threads that do not have local id 0 will be thrown away. That is 31 threads out of
32 that are doing extra processing for no reason. This means that many early out
optimization techniques do not apply on GPUs. In fact, early out optimization
can slow the kernels down in some cases because the executions diverge.

1 f l o a t a = 0 ;
2 f l o a t b = 0 ;
3 f l o a t c = 0 ;
4

5 // . . . process ing
6

7 i f (g e t _ l o c a l _ i d (0) == 0)
8 a = b + c ;
9

10 // . . . more process ing

Figure 5.3: Example of divergence

There has to be instruction convergence in every thread of every warp. In
case of a divergence some of the threads are kept idling until re-convergence.

5.2.2 Memory Access

Memory has to be read and written in specific patterns to avoid hitting slow
paths. The common ideal pattern is that a group of 32 threads read consecutive
memory where each thread reads 1/32 of it, the first thread reading the first
1/32 of the memory, the second reading the next, . . . [16]. Even if we do read
sequentially we still have to make sure the memory is aligned. Misaligned ac-
cess causes the warp to read additional memory that is not used. In case of AES
this is a non-issue, the blocks are 128bit which is aligned on all of our target
hardware.

23

5. IMPLEMENTATION

Figure 5.4: Aligned vs. unaligned memory access [16]

Local memory on the GPU is accessed via memory banks. Accessing the
same memory bank from multiple threads results in a bank conflict. When a
bank conflict occurs the accesses have to be serialized which slows down per-
formance. The amount of memory banks differs between GPUs, NVIDIA GTX
460 has 32 memory banks.

5.3 Benchmark Suite

To measure performance we implemented a benchmark suite. This suite in-
cludes synthetic tests that measure throughput of all the implemented algo-
rithms. Memory transfers from host to device are included in the measurements
unless stated otherwise. Tests are run multiple times and averaged to improve
measurement precision.

Timing methods used in other publications greatly vary, most publications
focusing on performance do not factor in memory transfer and other setup
costs. All benchmark results in this project factor in all setup costs unless stated
otherwise. In practical applications users usually want processed data in host
device RAM so we consider measuring with memory transfers closer to real-
world usage. For some use-cases users may be able to hide memory transfers
performance cost completely by doing it in parallel of encryption or decryption

24

5. IMPLEMENTATION

of another independent data-set [33].
There are a few unexpected issues that result in useless benchmark times.

Many GPUs change their clock-speeds depending on their load. This is done to
lower heat dissipation and energy consumption. When we first start processing,
the GPU runs at a low clock-speed. After less than a second it increases the
clock-speed to a middle level and a short while after that it runs at the highest,
full design clock-speed. This makes the first benchmarked task seem slower
than it actually is. To counteract this effect the GPUs are warmed up first — a
dummy task is executed on them. Immediately after the dummy task is finished
we run the real benchmark. Instead of having to code a dummy task we simply
ran the benchmarks twice in a row to ensure the GPU runs at full design clock-
speeds. The nvidia-settings utility was used to verify the clock-speeds.

5.4 Memory Transfer Between Host and OpenCL Device

A typical use-case involves copying data from host RAM to device memory,
executing the kernel, and then copying results back to host RAM for further
use. Optimizing for fast memory transfers is clearly important. The theoretical
limit on 16-lane PCI-E 2.0 is 8 GB/s in both directions [35]. Design limit on
DDR3-1333 is 10.66 GB/s. NVIDIA GTX 460 — the main GPU we are testing
with — has GDDR5. The design speed of GDDR5 is higher than of DDR3-1333
so we do not need to consider it as a bottleneck.

The initial implementation used generic memory transfers. After the initial
memory transfer code has been written, these were the numbers we got from
our benchmark.

64 kB 256 kB 1 MB 4 MB
GPU to CPU (average MB/s) 31.321 32.970 33.229 33.186
CPU to GPU (average MB/s) 37.656 39.911 40.137 39.792

Table 5.1: Initial implementation memory transfer performance

It turns out that memory transfer was the biggest overall bottleneck after
the initial implementation was completed. The first step for improvement is
very trivial — remove out of bounds safeties for release builds. This saves a lot

25

5. IMPLEMENTATION

of cycles and enables the compiler to aggressively optimize. Reads and writes
of locked data buffers get optimized to memcpy calls.

64 kB 256 kB 1 MB 4 MB
GPU to CPU (average MB/s) 291.582 318.691 341.806 339.364
CPU to GPU (average MB/s) 239.343 262.314 275.879 271.146

Table 5.2: Memory transfer performance with safety checking off and full opti-
mization

DataBuffer transfers were no longer the main bottleneck but we decided to
push the performance a little bit further. The last optimization came from mov-
ing from generic memory buffers to pinned memory. In our tests we discovered
that it is worth it for all but the smallest buffer sizes. When using pinned mem-
ory in oclcrypto we let the OpenCL driver from the vendor allocate shadow
memory for device buffer and we tell it to map and unmap it when we want
to access it. That means that the OpenCL driver can allocate the memory in
whichever way is most performant on that architecture. The speed-up over
generic buffers is quite incredible, especially when reading back big buffer sizes.

64 kB 256 kB 1 MB 4 MB
GPU to CPU (average MB/s) 65.874 449.561 810.093 822.656
CPU to GPU (average MB/s) 59.671 234.991 306.883 312.932

Table 5.3: Pinned memory transfer performance

This performance was still not close to the theoretical limit of 8 GB/s. At this
point we decided that any other optimization for memory transfers did not have
a decent cost / benefit ratio. Memory transfers stopped being the bottleneck for
our use-cases.

26

5. IMPLEMENTATION

64 kB 512 kB 4 MB 32 MB
0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

Memory transfer from GPU to CPU (GTX 460)

MB/s (debug) MB/s (release) MB/s (pinned)

64 kB 512 kB 4 MB 32 MB
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Memory transfer from CPU to GPU (GTX 460)

MB/s (debug) MB/s (release) MB/s (pinned)

Figure 5.5: Memory transfer speeds comparison charts

5.5 Cryptographic Algorithm Context

The goal of this library is to hide the added complexity of GPU computing
from the user. Cryptographic Context classes are written to do just that. User
is expected to construct them, set their parameters, execute them and collect re-
sulting data. Besides having to read data from GPU DataBuffers all the GPU
complexity is hidden. Reading from GPU DataBuffers is made a bit more con-
venient with C++ operator overloading.

The high level cryptographic API is centered around oclcrypto::System. Users

27

5. IMPLEMENTATION

are expected to construct at least one System class and reuse it for all their cryp-
tographic needs. Each cryptographic algorithm has its own context class that
needs to be setup and then executed. Users are encouraged to reuse the same
context class in case they are using the same key for multiple chunks of input.
Reusing the context enables the library to skip key schedule if key remains the
same.

Typical life-cycle of a cryptographic context involves construction, setting a
key, setting an initialization vector or nonce, setting the input data, executing
the encryption or decryption and finally copying the resulting data back for
further use. Since the key schedule usually does not depend on the processing
mode, each cryptographic algorithm has a base class that does the key schedule
and then a class for each supported mode.

AES_GCM_Encrypt

+ plainText : DataBuffer

+ cipherText : DataBuffer

+ initialVector : cl_uchar16

+ execute()

AES_CTR_Encrypt

+ plainText : DataBuffer

+ cipherText : DataBuffer

+ initialCounter : cl_uchar16

+ execute()

AES_Base

+ expandedKey : DataBuffer

+ setKey()

AES_ECB_Encrypt

+ plainText : DataBuffer

+ cipherText : DataBuffer

+ execute()

Figure 5.6: Various AES modes share the key expansion code

1 oc lc r ypto : : System system ;
2 // we assume user wants to use the f i r s t device a v a i l a b l e
3 oc lc r ypto : : Device& device = system . getDevice (0) ;
4 oc lc r ypto : : AES_ECB_Encrypt contex t (system , device) ;
5 contex t . setKey (key) ;
6 contex t . s e t P l a i n T e x t (p l a i n t e x t , p l a i n t e x t S i z e) ;
7 contex t . execute (2 5 6) ; // use 256 threads
8 auto c ipherText = contex t . getCipherText ()−>loadRead<unsigned char > () ;

Figure 5.7: Cryptographic context usage example

28

5. IMPLEMENTATION

To avoid API usage mistakes, the encrypt and decrypt contexts have method
names with plain-text and cipher-text instead of just input and output.

5.6 Regression Testing

Correctness is obviously very important in cryptographic algorithms. Since this
project involves optimizing them for speed we need to make sure we do not
break functionality. I have chosen boost::test to implement test cases for the
cryptographic algorithms.

The NIST test vectors were added to the test suite to avoid regressions when
changing the kernels. Furthermore we have added a few round trip smoke tests.

The entire test suite is executed by running oclcrypto-test.

1 $./ oclcrypto−t e s t s
2 Running 25 t e s t cases . . .
3 * * * No e r r o r s detec ted

Figure 5.8: Expected test suite output

As algorithms were added test vectors were added to the test suite. As a
result, the project has a high test coverage.

5.7 Storage of OpenCL Kernel Source Code

Existing projects related to OpenCL (see Chapter 3) typically store the kernel
sources in separate files. At run-time, these files are opened, their contents are
read and passed to the OpenCL API for compilation. In our experiments this
proved to be problematic. The shared object library had to know where to load
the sources from. This is a source of problems that we wanted to avoid.

Instead of storing the kernel sources separately we chose to build them into
the shared object. Just using static const char variables directly worked quite
well but editing was very awkward and inefficient. Syntax highlighting was not
available, special characters had to be escaped which made the code harder to

29

5. IMPLEMENTATION

read, any refactoring required awkward indentation and quote character fixes.
The solution that was used in the end involves loading separate OpenCL ker-
nel source files and processing them into C/C++ files with a single static const
char* variable. This seemed to be the best of both worlds. Files can be edited
separately, yet the sources are inbuilt into the shared object. The complexity of
getting file paths of the OpenCL kernel right are moved from the user to the
person building the library.

The end solution is not perfect and it is quite easy to find test vectors that
result in invalid C/C++ code being generated. The C/C++ code is generated at
configure time instead of compile time, this can lead to unexpected issues when
rebuilding the project. Since this does not affect our OpenCL kernel sources and
was not the focus of this project we decided to ignore these issues.

5.8 OpenCL Memory Access

OpenCL has multiple types of device memory.

• global

• constant

• shared

• local

• private

The OpenCL memory types are related to how a GPU is designed, see Sec-
tion 5.2. Peak throughput as well as latency varies tremendously between differ-
ent memory types. But choosing the right type of device memory is not enough,
there are several memory access anti-patterns in OpenCL and CUDA that may
not be obvious to a CPU programmer. Even worse these pitfalls differ between
GPU architectures. See Section 5.2.2 for more.

Fortunately, the one thread per AES block kernel naturally avoids many of
these pitfalls when reading plain-text — the global data is read sequentially. We
have to take extra care when reading the AES expanded key or Blowfish P array

30

5. IMPLEMENTATION

or SBoxes though. The initial implementation read all these from global mem-
ory and suffered from low throughput and bank conflicts. This was improved
when the data was first copied into local memory, then read. See Section 6.1 for
more.

5.9 AES-ECB

AES-ECB was the first algorithm we implemented because it is a building block
for both CTR and GCM. In itself ECB is not very useful because patterns in the
cipher-text may reveal patterns in the plain-text.

We used the official NIST FIPS 197 specification [32] to draft the first im-
plementation. The first draft is just the NIST pseudo-code coded with OpenCL
syntax and processing one AES block with one OpenCL thread. We decided
against using heavily optimized AES because it is harder to debug and harder
to analyze.

Key

P1

thread 1

C1

AES

P2

thread 2

C2

AES
...

Pn

thread n

Cn

AES

Figure 5.9: AES-ECB processing chart

Two look-up tables are required for Sbox and InverseSbox operations. Six
look-up tables are required for the Galois Field multiplication which is used in
MixColumns and InverseMixColumns. All eight tables are kept in device mem-
ory, access to the data is cached. Total memory cost is 8∗256 = 2048 bytes, which
is a reasonable cost considering we can then do all the mentioned operations in

31

5. IMPLEMENTATION

1 __kernel void AES_ECB_Encrypt (
2 __global uchar16 * plainText , __global uchar16 * expandedKey ,
3 __global uchar16 * cipherText ,
4 unsigned i n t rounds , unsigned i n t blockCount)
5 {
6 i n t idx = g e t _ g l o b a l _ i d (0) ;
7 i f (idx < blockCount)
8 {
9 uchar16 s t a t e = pla inText [idx] ;

10 s t a t e = AES_AddRoundKey(s t a t e , expandedKey [0]) ;
11

12 f o r (unsigned i n t i = 1 ; i < rounds − 1 ; ++ i)
13 {
14 s t a t e = AES_SubBytes (s t a t e) ;
15 s t a t e = AES_ShiftRows (s t a t e) ;
16 s t a t e = AES_MixColumns (s t a t e) ;
17 s t a t e = AES_AddRoundKey(s t a t e , expandedKey [i]) ;
18 }
19

20 s t a t e = AES_SubBytes (s t a t e) ;
21 s t a t e = AES_ShiftRows (s t a t e) ;
22 s t a t e = AES_AddRoundKey(s t a t e , expandedKey [rounds − 1]) ;
23 c ipherText [idx] = s t a t e ;
24 }
25 }

Figure 5.10: AES-ECB OpenCL kernel

constant time. Furthermore, we can use the same instructions every time which
is necessary because of the way GPUs work. See Section 5.2.1 for more.

The algorithm is naturally parallelizable by block — one thread encrypts
or decrypts one AES block. In case of AES-ECB decryption simply performs
inverse of all the steps of encryption in reverse order.

Several straightforward optimization steps were available for the first pro-
totype. We can use the restrict keyword for non-overlapping memory buffers.
The read_only and write_only keywords can be used to decorate inputs and
outputs. This helps the compiler optimize more aggressively. The performance
numbers looked quite promising. As we can see from Figure 5.11 the speed
clearly increases as plain-text sizes increase. Larger key sizes cause more AES
rounds to be processed, so the speed decreases as AES key size increases.

32

5. IMPLEMENTATION

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
ECB-128 MB/s 2.256 8.908 34.835 79.933 123.244 128.204
ECB-192 MB/s 2.285 9.043 33.310 72.023 106.990 110.899
ECB-256 MB/s 2.277 9.087 31.633 65.513 94.524 97.673

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

AES-ECB key size comparison

ECB-128 MB/s ECB-192 MB/s ECB-256 MB/s

Figure 5.11: AES-ECB performance

5.10 AES-CTR

Before doing any further optimization we decided to go ahead and implement
the CTR mode. CTR is not just an important mode to benchmark, it is also a
practical way to encrypt and decrypt files and is therefore very suitable for our
case studies.

The AES-CTR kernel is just a small step away from ECB. Instead of encrypt-
ing the plain-text, a counter is incremented and then encrypted with given key.
Instead of always starting from zero the counter starts from a value called Initial
Counter or also Initial Vector. The encrypted counter is then used to XOR the
plain-text block. The advantage is that patterns in plain-text do not show in the
cipher-text. Extra care has to be taken to avoid reusing initial counters as that
can expose the key!

33

5. IMPLEMENTATION

Key

P1

thread 1

C1

IC

id

+

AES

XOR

P2

thread 2

C2

id

+

AES

XOR

...

Pn

thread n

Cn

id

+

AES

XOR

Figure 5.12: AES-CTR processing chart

Incrementing the counter in a generic way turned out to be a difficult task.
The counter is a 128bit number and there is simply no widely available function
in OpenCL that can add two 128bit numbers with proper carry and overflow.
Incrementing a 128bit counter by one would be reasonably fast and easy to do
but that is not enough for our use case. We cannot use any results from any
of the threads as that would create dependencies and slow processing down.
Instead we need a generic 128bit integer addition.

The first version we implemented looked like this:

1 void AES_CTR_IncrementIC (uchar16 * ic , unsigned i n t id)
2 {
3 // TODO: This w i l l not carry over the l a s t h a l f !
4 // We need some s o r t of a uint4_add funct ion .
5

6 // because of endianess we need to f l i p
7 unsigned long l a s t = (unsigned long) ic−>sfedcba98 ;
8 l a s t += id ;
9 uchar8 * l a s t _ u c h a r 8 = (uchar8 *)&l a s t ;

10 // and then f l i p i t back
11 i c−>s89abcdef = las t_uchar8−>s76543210 ;
12 }

There are several issues with this implementation. First of all it does not

34

5. IMPLEMENTATION

carry over the last half, as the comment says. It also assumes endianess of the
device which goes against our requirements to be hardware neutral.

We will focus on fixing endianess first. If the device is little endian we can
compile the program with LITTLE_ENDIAN macro defined. Using #ifdef in
the OpenCL source we can choose the appropriate code path.

Fixing the carry-over proved to be much more difficult. One possible solu-
tion is to copy the last half, add to it, then check if the new version is lower than
the old version. If it is we need to add the carry-over to the first half. This re-
quires many more instructions and only affects cases where the IC is chosen to
have high least significant bits. We have decided to ignore this issue and instead
recommend using suitable ICs.

After the counter increment was implemented, we took code from the ECB
kernel and used it to encrypt the counter.

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
CTR-128 MB/s 2.263 9.072 34.971 87.186 139.519 145.386
CTR-192 MB/s 2.258 8.959 34.603 77.764 118.955 123.517
CTR-256 MB/s 2.262 9.047 32.656 70.260 103.500 107.357

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

AES-CTR key size comparison

CTR-128 MB/s CTR-192 MB/s CTR-256 MB/s

Figure 5.13: AES-CTR performance

35

5. IMPLEMENTATION

5.11 AES-GCM

The encryption and decryption is just a small step from AES-CTR. We decided
not to include a processing chart for GCM as it just a variation of the previous
processing modes. A big difference between CTR and GCM counter processing
is that GCM allows us to assume that the last 32 bits of Initial Counter are zeros.
This helps a lot with a fast hardware implementation of counter incrementing.
It also means that the counter will wrap around after 4294967295 blocks. But
since that is more than 17 GB of plain-text this is not a big issue. In practical use
plain-text of that size will not be transferred at once.

The encryption and decryption are easy to implement. However we also
have to do authentication as part of AES-GCM. And GCM authentication can-
not be easily parallelized. The authentication tag for block n depends on au-
thentication tag of block n-1. See figure 5.14. This creates a chain of dependen-
cies between all the blocks and really stalls the processing. It may be possible
that there is something better than serial processing — like a reduction — avail-
able but we could not find any. Since the authentication is serial it makes sense
to always do it on the CPU. The serial part of the algorithm is too large for
a big speed-up with massive parallelization — see Section 4.6 for more about
Amdahl’s Law.

36

5. IMPLEMENTATION

Figure 5.14: AES-GCM diagram

5.12 Performance Comparison of AES Modes

Before we measured and looked at the numbers we expected to find that all
three AES modes have roughly the same performance. Surprisingly, the perfor-
mance numbers of AES-CTR and AES-GCM are consistently better than AES-
ECB. The difference is significant. It is very difficult to say the reason for this
with absolute certainty but AES-CTR and AES-GCM are most likely more cache
friendly on NVIDIA GTX 460. If possible we would back this up with data from
nvprof but the tool refuses to profile OpenCL programs. CTR and GCM modes
of AES are almost identical so the performance numbers are very close.

37

5. IMPLEMENTATION

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

AES modes compared (128bit key)

ECB MB/s CTR MB/s GCM w/o auth MB/s

Figure 5.15: AES modes performance comparison

5.13 Blowfish-ECB

Because of the smaller block-size Blowfish has better occupancy for smaller
plain-text sizes than AES — two times as many threads can be used for the
same plain-text size. We therefore expect the ECB mode to be at least twice as
fast as AES-ECB.

Our initial implementation stored the key-dependent SBoxes in global mem-
ory.

Blowfish was implemented mainly for performance comparison purposes.
In practice it is rarely used compared to AES, the smaller block-size makes it
more performant but also less secure than AES. For this reason we only im-
plemented the ECB mode. Other modes can be added quite easily if there is
demand for them. Typical AES key sizes were used for comparison purposes.

38

5. IMPLEMENTATION

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
ECB-128 MB/s 2.261 8.958 34.913 124.610 352.996 394.437
ECB-192 MB/s 2.274 8.962 34.988 124.756 352.479 394.417
ECB-256 MB/s 2.278 8.967 34.926 124.668 352.085 395.181

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

Blowfish-ECB key size comparison

ECB-128 MB/s ECB-192 MB/s ECB-256 MB/s

Figure 5.16: Blowfish-ECB performance

As we can see from Figure 5.16, performance is independent of key size. The
reason for this is that the key size only affects the key schedule and the key
schedule for Blowfish is defined in such a way that it takes roughly the same
time regardless of key size [34]. Let us now compare the performance to our
AES implementation.

39

5. IMPLEMENTATION

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

AES vs Blowfish (128bit key, ECB mode)

AES-128 MB/s Blowfish-128 MB/s

Figure 5.17: AES vs. Blowfish performance

We can see that the performance is noticeably faster than AES. The main rea-
son for this is higher occupancy — twice as many of the GPU threads are being
used for the same plain-text size — and lower amount of table look-ups while
processing. Our implementation of Blowfish on average uses a lower amount
of table look-ups than the AES implementation. It is also likely that Blowfish is
more cache friendly on GPU.

40

6 Performance Evaluation

In this chapter we optimize the OpenCL kernels and evaluate performance on
various hardware setups.

6.1 Optimizing Memory Access

After the basic implementation was completed we started to optimize. The first
logical step was to optimize memory access in the kernels. The initial prototypes
used registers and global memory directly. Using local memory for resources
shared between threads in a warp offered potential for better performance. Lo-
cal memory has much lower latencies and is much faster than global memory.
See Section 5.2.2 for more. To copy global memory to local in a device-agnostic
way we used async_work_group_copy.

1 _ _ l o c a l uchar16 localExpandedKey [1 5] ;
2

3 event_t cacheEvent ;
4 cacheEvent = async_work_group_copy (
5 localExpandedKey ,
6 expandedKey ,
7 rounds ,
8 cacheEvent
9) ;

10

11 const i n t g l o b a l _ i d = g e t _ g l o b a l _ i d (0) ;
12 uchar16 s t a t e = pla inText [g l o b a l _ i d] ;
13 wait_group_events (1 , &cacheEvent) ;

Figure 6.1: Using local memory in AES-ECB kernel

We expected dramatic speed-up when copying expanded key to local mem-
ory and using the local copy in all threads of a warp. The difference between
using __constant and this solution was noticeable for small plain-text sizes but
as the buffers got bigger there was no difference.

41

6. PERFORMANCE EVALUATION

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

AES-ECB local memory speed-up

ECB MB/s ECB_local MB/s

Figure 6.2: AES local memory speed-up

Unfortunately, without access to solid profiler tools we can only speculate
why the difference is so small for large buffer sizes.

We also managed to get a noticeable speed-up in Blowfish copying the P
array and SBoxes to local memory, again especially for smaller buffer size. We
can only speculate that larger buffer sizes hide memory transfer latencies.

42

6. PERFORMANCE EVALUATION

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

Blowfish-ECB local memory speed-up

ECB-128 MB/s ECB_local-128 MB/s

Figure 6.3: Blowfish local memory speed-up

6.2 Performance Comparison Across Hardware

All charts and data up to this point have been measured on Intel i7 920 with
NVIDIA GTX 460 on Fedora Linux 21. This chapter contains comparison with
other hardware on other platforms. We will only show charts in this section to
save space, for raw data please see the attached benchmark_results.ods file.

43

6. PERFORMANCE EVALUATION

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
0.00

50.00

100.00

150.00

200.00

250.00

300.00

AES-ECB 128 Hardware Comparison

GT 650M MB/s GTX 460 MB/s

i7-4600U pocl MB/s GTX 580 MB/s

Figure 6.4: AES-ECB 128 hardware comparison

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
0.00

50.00

100.00

150.00

200.00

250.00

300.00

AES-CTR 128 Hardware Comparison

GT 650M MB/s GTX 460 MB/s

i7-4600U pocl MB/s GTX 580 MB/s

Figure 6.5: AES-CTR 128 hardware comparison

These results show quite clearly that there is future potential as GPUs get

44

6. PERFORMANCE EVALUATION

faster and faster. NVIDIA GTX 580 clearly outperforms our main GPU by a
significant amount. Both GTX 460 and GTX 580 are quite old. There are far
better performing GPUs on the market that we have not tested with. It is very
surprising that portable OpenCL results from an Intel i7-4600U — a mobile
CPU — are so close to the GTX 460. Not having to do memory transfers is a
clear advantage in favor of the CPU but the CPU has just two real cores.

Let us look at latencies — the time between input data transfer starts and
result data transfer ends. Predictably, latencies increase as buffer sizes increase.

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

AES-CTR Latency Comparison

GT 650M ms GTX 460 ms i7-4600U pocl ms GTX 580 ms

Figure 6.6: AES-CTR 128 latency comparison

We can observe that our solution gets more efficient as latencies increase.
This suggests that the high performance can be exploited for bulk processing
but is less useful for real-world cryptographic protocols.

45

6. PERFORMANCE EVALUATION

4 kB 16 kB 64 kB 256 kB 1 MB 4 MB
0.00

100.00

200.00

300.00

400.00

500.00

600.00

Blowfish-ECB Hardware Comparison

i7-4600U pocl MB/s GT 650M MB/s

GTX 460 MB/s GTX 580 MB/s

Figure 6.7: Blowfish-ECB hardware comparison

Blowfish-ECB paints a slightly different picture. Even NVIDIA GTX 650M
— the slowest GPU we tested — is faster than Intel i7-4600U for large buffer
sizes. The most likely reason is that Blowfish offers twice the occupancy of AES
and overall is a simpler algorithm.

These numbers clearly show that cryptography on GPU can be very fast but
also exhibits high latencies. For some use-cases like bulk encryption we do not
care but for anything real-time — like hard drive encryption — this would be a
big issue.

Let us also compare memory transfer speeds of all tested hardware since
memory transfers take a significant amount of time with the GPUs. The NVIDIA
GTX 650M is excluded for lack of data. Portable OpenCL CPU results are ex-
cluded because with pinned memory that is a NOOP .

46

6. PERFORMANCE EVALUATION

64 kB 512 kB 4 MB 32 MB
0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Memory transfer to device

GTX 460 MB/s GTX 580 MB/s

64 kB 512 kB 4 MB 32 MB
0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

Memory transfer from device

GTX 460 MB/s GTX 580 MB/s

Figure 6.8: Memory transfer hardware comparison

These charts suggest that the graphics card is the bottleneck when transfer-
ring memory. It would be interesting to run these benchmarks with a modern
PCI-E 3.0 GPU to confirm.

47

7 Integrations

7.1 oclcrypto-cli

As part of this project we created a small command line tool with an argument
syntax inspired by openssl enc. It allows users to encrypt or decrypt files using
algorithms available in oclcrypto. It is the simplest practical application of the
library. It does not require user to choose any OpenCL device, instead it will
choose the first available. The only required arguments are input and output
files and key.

1 $ oclcrypto−c l i aes−ecb−enc helohelohelohelo \
2 pla in . t x t c ipher . t x t
3 $ oclcrypto−c l i aes−ecb−dec helohelohelohelo \
4 c ipher . t x t plain_copy . t x t
5 $ d i f f −u pla in . t x t plain_copy . t x t

Figure 7.1: oclcrypto-cli usage example

7.2 OpenSSL Engine Integration

To properly test the library in practice we decided to integrate it with OpenSSL.
The OpenSSL engine API [19] was used because it is modular and allows for
plugins to be loaded at run-time that can replace the inbuilt cryptographic func-
tions. That seemed like a great idea at first. The API itself turned out to be not
well suited for our use case.

First, let us outline how an ideal API would look like for oclcrypto. Before
the cryptographic context class was initialized a function would be called with
key size and buffer size. This function would be able to determine whether this
cryptographic engine should be used, depending on the buffer size. For exam-
ple if buffer size is just 128bits the function would decline to be used. That way
we would never waste a lot of time setting all the OpenCL infrastructure up just
to encrypt 128bits. Secondly, all the data would either be transferred in very big

48

7. INTEGRATIONS

chunks or even all at once. Transferring partial results out of OpenCL devices
incurs a noticeable overhead.

Unfortunately the OpenSSL engine API allows neither of these. When ini-
tializing the context class we do not get the key size or the amount of data that
will be processed in the future. First the key is set, without any information
about future buffer sizes. Given key is expanded, the results are transferred to
OpenCL data buffers. When the data starts coming in later, it is too late to per-
form another CPU key schedule and process the data on the CPU, we would
be duplicating work. We conclude that the API is too low-level for our use
case. Maybe low-level is not the right word for it but it surely is not suitable
for CPU / GPU auto-negotiation.

The work in progress OpenSSL engine integration is optional, only com-
piled when OpenSSL headers are found at configure-time and can be found in
the openssl_engine folder of the project.

49

8 Security Concerns

Gaming enthusiasts drive the sales of modern consumer GPUs [22] so it is no
surprise that GPU manufacturers optimize almost exclusively for computer
games. Driver releases are often focused solely on improving performance of
a newly released game. Needless to say there is not a big push towards cor-
rectness and security in what is mainly gaming hardware. GPU vendors even
provide multiple versions of various instructions, one version is correct and ad-
heres to the standard and one is faster but less precise [24].

New in GeForce 337.88 Game Ready WHQL drivers:

Game Ready — This 337.88 Game Ready WHQL driver ensures you’ll have the
best possible gaming experience for Watch Dogs.

Performance — Introduces key DirectX optimizations which result in reduced
game-loading times and significant performance increases across a wide variety
of games compared with the previous 335.23 WHQL.

Figure 8.1: NVIDIA 337.88 driver release announcement

One of the most common security issues in GPUs are information leaks.
Information in this context can be part of a texture or other data buffer.

GPU vendors cut corners to maximize performance. This means that mem-
ory in the GPU may not be overwritten when it is being deallocated and future
use of this part of memory may reveal past data. Unfortunately, GPU vendors
are secretive to maintain their competitive advantage and do not generally re-
lease how their architectures work. Di Pietro et al. [26] go into detail about how
data is leaked in a paper from 2013. In many instances memory buffers are left
at the mercy of the driver and there is no way to be sure that their contents
will be overwritten. The driver also handles memory protection. The operating
system uses similar methods to protect memory but the protection methods are
available for audit and subject to scrutiny.

Vasiliadis et al. [36] look at the issue from the opposite end and propose to
store keys in GPU instead of CPU as a measure to avoid key leakage. Running
kernels indefinitely is proposed as a way to avoid data buffer leakage. If the

50

8. SECURITY CONCERNS

memory is taken by a kernel the scheduler will not allow other kernels to read
or write to it. Instead of storing the keys in global memory the keys are stored
in registers. As long as the kernel is running the registers are not cleared. Un-
fortunately registers can only store a few secret keys, the storage space is small
on consumer GPUs. To solve this, encrypted keys are stored in global memory
and the encryption key is stored in registers. That way, the adversary can steal
the encrypted key-store but cannot decrypt it.

Bernstein [23] provided a timing attack against OpenSSL AES implementa-
tion in 2005. Using table look-ups in AES makes the implementation susceptible
to a timing attack if the attacker can encrypt or decrypt any data. Researching
whether a timing attack is viable against our implementation is out of scope
of this project. We can speculate that since we use look-up tables our imple-
mentation is susceptible. The author provides a list of problems of existing AES
implementations and their solutions. Unfortunately the solutions are often not
applicable to OpenCL kernels.

51

9 Areas for Future Improvement

9.1 Splitting up AES Block Processing

All of the algorithms in this project are parallelized per block. In case of AES,
one 128bit block is processed by a single thread. A warp of 32 threads processes
32 AES blocks. There is strong indication that AES one block per thread is the
fastest arrangement [28]. However, this only applies for very large plain-text
sizes where the entire GPU is utilized — occupancy is close to 100%. For small
block sizes we end up using just a part of the GPU. It seems viable to use an
arrangement with slightly lower throughput but higher occupancy for small
plain-text sizes. Four threads per AES block is the first arrangement to explore.
In this arrangement, a warp of 32 threads processes 8 AES blocks.

Key

P1

thread group 1 - handles AES block 1

C1,1

AES

thread 1

P1

C1,2

AES

thread 2

P1

C1,3

AES

thread 3

P1

C1,4

AES

thread 4

Figure 9.1: AES-ECB with 4 threads encrypting 1 AES block

The idea is fairly simple, however there are several obstacles. First of all, for
each step of AES-ECB we need the previous step finished and we need its data.
So all four threads have to cooperate very closely and wait for each other. The
data has to be kept in __local memory for easy access. Second obstacle is that
each of the four threads has to operate with slightly different instructions. This
is not ideal for most GPU architectures that expect a massive amount of threads,
each running exactly the same instructions with different input data.

52

9. AREAS FOR FUTURE IMPROVEMENT

The resulting algorithm should be faster for small buffer sizes because more
of the GPU resources are used. However it would likely be slower for large
buffer sizes due to the synchronization overhead.

9.2 Interleaving Data Transfer and Processing

Copying data in, processing and then copying data out resembles a lot of real-
world use-cases. When used repeatedly on different data, it is possible to copy
data to the GPU while the GPU is processing other data that was copied previ-
ously. This is called Interleaved Data Transfer and is available in both OpenCL
and CUDA. Previous work suggests that interleaving data transfers can hide
approximately 65% of the data transfer cost in an AES encryption situation [28].

This project cannot use this technique at the time because it relies on the
fact that device queues are processed in-order. This greatly simplifies the code-
base at various places. The code-base would require extensive changes — like
explicit locking — before Interleaved Data Transfer could be used.

encrypt get cipher-text

send plain-text encrypt get cipher-text

send plain-text

Figure 9.2: Example of Interleaved Data Transfer

9.3 Secure Key-Store

Our implementation stores the expanded key using global memory on the GPU.
The global memory is readable from the host with very few restrictions. Any-
body with permissions to use the GPU can read global memory. This renders
our project unusable in a multi-user situation where users can use accelerated
graphics. An adversary might read other users’ keys by simply reading the
global memory.

Switching to other key-store is out of scope of this project and would most
likely decrease performance. A possible solution to store encrypted keys in

53

9. AREAS FOR FUTURE IMPROVEMENT

global memory and the key in registers is mentioned by Vasiliadis et al. [36].

9.4 Khronos Vulkan

The trend in graphics APIs is to expose more of the internal complexity to the
developer. Recent announcements of Khronos Vulkan [14] suggests that GPU
vendors and developers both prefer the API to be closer to hardware.

It is likely that OpenGL will be replaced by Khronos Vulkan in the future.
There is significant functionality overlap between OpenCL and Vulkan, there-
fore it may happen that OpenCL will also be replaced. It seems like a viable
idea to explore the new API and perhaps even provide implementations of the
AES and Blowfish kernels for it.

54

10 Conclusion

We have designed and implemented a portable open-source library for sym-
metric block encryption and decryption on a GPU or any other OpenCL device.
The library supports AES and Blowfish ciphers, the implementations are cov-
ered by unit tests and measured by benchmarks. The library API processes all
data on an OpenCL device but at the same time hides the complexity of GPU
Compute from the user. Users can use the API with very little knowledge about
GPUs, OpenCL or related technology.

The performance numbers we measured look promising. We have achieved
252 MB/s of throughput with AES-CTR and 531 MB/s with Blowfish-ECB on
NVIDIA GTX 580 including all set-up costs. Consumer GPUs used as OpenCL
devices proved to be decent and cost-effective cryptographic accelerators. Effi-
ciency of our solution increases as latencies increase, which makes the solution
suitable for bulk processing rather than cryptographic protocols.

While there are problems and areas for improvements, we believe the solu-
tion presented can be used in real world applications as a substitute for dedi-
cated cryptographic accelerators.

55

Nomenclature

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

CBC Cipher Block Chaining

CPU Central Processing Unit

CTR Counter Mode

CUDA Compute Unified Device Architecture

DDR Double Data Rate

DES Data Encryption Standard

ECB Electronic Code Book

FPGA Field Programmable Gate Array

FPU Floating Point Unit

GCM Galois / Counter Mode

GDDR Graphics Double Data Rate

GLSL OpenGL Shading Language

GPGPU General Purpose GPU Computation

GPU Graphics Processing Unit

HLSL High-Level Shading Language

IC Initial Counter

IEEE Institute of Electrical and Electronics Engineers

IPSec Internet Protocol Security

56

10. CONCLUSION

IV Initial Vector

NIST National Institute of Standards and Technology

NOOP No Operation

NSA National Security Agency

NVIDIA Cg short for C for Graphics

OpenCL Open Compute Library

OpenGL Open Graphics Library

OpenGL ARB OpenGL Architecture Review Board

RAII Resource Acquisition Is Initialization

RAM Random Access Memory

SBox Substitution Box

SIMT Single Instruction, Multiple Threads

SM Streaming Multiprocessor

SSL Secure Sockets Layer

TLS Transport Layer Security

XOR eXclusive OR

57

Bibliography

[1] AMD CodeXL benefits in detail. http://developer.amd.com/

tools-and-sdks/opencl-zone/codexl/codexl-benefits-

detail/. Accessed: 2015-05-10.

[2] AMD picks up an OpenGL and CL tool makers as well as an RnD
site. http://www.pcper.com/news/General-Tech/AMD-pick-

OpenGL-CL-tool-makers-well-RD-site. Accessed: 2015-05-07.

[3] Blowfish F function diagram by Decrypt3 and DnetSvg. https://

commons.wikimedia.org/wiki/File:BlowfishFFunction.svg.
Accessed: 2015-05-10.

[4] C++ compiler support. http://en.cppreference.com/w/cpp/

compiler_support. Accessed: 2015-05-08.

[5] Cg toolkit website. https://developer.nvidia.com/cg-toolkit.
Accessed: 2015-04-27.

[6] Compute shader overview. https://msdn.microsoft.com/en-us/

library/windows/desktop/ff476331%28v=vs.85%29.aspx. Ac-
cessed: 2015-03-27.

[7] CUDA toolkit 3.1 download notes. http://developer.nvidia.com/
cuda-toolkit-31-downloads. Accessed: 2015-05-08.

[8] CUDA toolkit 5.0 release notes and errata. http://developer.

download.nvidia.com/compute/cuda/5_0/rel/docs/CUDA_

Toolkit_Release_Notes_And_Errata.txt. Accessed: 2015-05-08.

[9] GPU-acceleration applications for HPC industries. www.nvidia.

com/content/gpu-applications/PDF/GPU-apps-catalog-

mar2015.pdf. Accessed: 2015-04-27.

[10] Intel advanced encryption standard (AES) instructions set - rev
3.01. https://software.intel.com/en-us/articles/intel-

58

http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/codexl-benefits-detail/
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/codexl-benefits-detail/
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/codexl-benefits-detail/
http://www.pcper.com/news/General-Tech/AMD-pick-OpenGL-CL-tool-makers-well-RD-site
http://www.pcper.com/news/General-Tech/AMD-pick-OpenGL-CL-tool-makers-well-RD-site
https://commons.wikimedia.org/wiki/File:BlowfishFFunction.svg
https://commons.wikimedia.org/wiki/File:BlowfishFFunction.svg
http://en.cppreference.com/w/cpp/compiler_support
http://en.cppreference.com/w/cpp/compiler_support
https://developer.nvidia.com/cg-toolkit
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476331%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476331%28v=vs.85%29.aspx
http://developer.nvidia.com/cuda-toolkit-31-downloads
http://developer.nvidia.com/cuda-toolkit-31-downloads
http://developer.download.nvidia.com/compute/cuda/5_0/rel/docs/CUDA_Toolkit_Release_Notes_And_Errata.txt
http://developer.download.nvidia.com/compute/cuda/5_0/rel/docs/CUDA_Toolkit_Release_Notes_And_Errata.txt
http://developer.download.nvidia.com/compute/cuda/5_0/rel/docs/CUDA_Toolkit_Release_Notes_And_Errata.txt
www.nvidia.com/content/gpu-applications/PDF/GPU-apps-catalog-mar2015.pdf
www.nvidia.com/content/gpu-applications/PDF/GPU-apps-catalog-mar2015.pdf
www.nvidia.com/content/gpu-applications/PDF/GPU-apps-catalog-mar2015.pdf
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/

10. CONCLUSION

advanced-encryption-standard-aes-instructions-set/. Ac-
cessed: 2015-03-27.

[11] Intel VTune amplifier 2015. https://software.intel.com/en-us/

intel-vtune-amplifier-xe. Accessed: 2015-05-08.

[12] Khronos - OpenCL - the open standard for parallel programming of het-
erogeneous systems. https://www.khronos.org/opencl/. Accessed:
2015-03-27.

[13] Khronos promoter members. https://www.khronos.org/members/

promoters. Accessed: 2015-05-16.

[14] Khronos releases Vulkan API. https://www.khronos.org/news/

press/khronos-reveals-vulkan-api-for-high-efficiency-

graphics-and-compute-on-gpus. Accessed: 2015-05-11.

[15] NVIDIA - about CUDA. https://developer.nvidia.com/about-

cuda. Accessed: 2015-03-27.

[16] NVIDIA’s next generation CUDA compute architecture - Fermi.
http://www.nvidia.com/content/pdf/fermi_white_papers/

nvidia_fermi_compute_architecture_whitepaper.pdf. Ac-
cessed: 2015-03-27.

[17] nvprof user’s guide. http://docs.nvidia.com/cuda/profiler-

users-guide/. Accessed: 2015-05-16.

[18] OpenGL ARB compute shader specification. https://www.opengl.

org/registry/specs/ARB/compute_shader.txt. Accessed: 2015-
03-27.

[19] OpenSSL engine API. https://www.openssl.org/docs/crypto/

engine.html. Accessed: 2015-05-11.

[20] Ruby-OpenCL homepage. http://ruby-opencl.rubyforge.org/.
Accessed: 2015-04-27.

59

https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://www.khronos.org/opencl/
https://www.khronos.org/members/promoters
https://www.khronos.org/members/promoters
https://www.khronos.org/news/press/khronos-reveals-vulkan-api-for-high-efficiency-graphics-and-compute-on-gpus
https://www.khronos.org/news/press/khronos-reveals-vulkan-api-for-high-efficiency-graphics-and-compute-on-gpus
https://www.khronos.org/news/press/khronos-reveals-vulkan-api-for-high-efficiency-graphics-and-compute-on-gpus
https://developer.nvidia.com/about-cuda
https://developer.nvidia.com/about-cuda
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://docs.nvidia.com/cuda/profiler-users-guide/
http://docs.nvidia.com/cuda/profiler-users-guide/
https://www.opengl.org/registry/specs/ARB/compute_shader.txt
https://www.opengl.org/registry/specs/ARB/compute_shader.txt
https://www.openssl.org/docs/crypto/engine.html
https://www.openssl.org/docs/crypto/engine.html
http://ruby-opencl.rubyforge.org/

10. CONCLUSION

[21] SSLShader website. http://shader.kaist.edu/sslshader/. Ac-
cessed: 2015-05-16.

[22] The state of PC graphics sales Q2 2014. http://www.anandtech.com/
show/8446/the-state-of-pc-graphics-sales-q2-2014. Ac-
cessed: 2015-04-27.

[23] Daniel J Bernstein. Cache-timing attacks on AES, 2005.

[24] NVIDIA Corporation. CUDA programming guide. 2012.

[25] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the ad-
vanced encryption standard. Springer Science & Business Media, 2002.

[26] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. CUDA leaks:
information leakage in GPU architectures. arXiv preprint arXiv:1305.7383,
2013.

[27] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era.
Computer, (7):33–38, 2008.

[28] Keisuke Iwai, Naoki Nishikawa, and Takakazu Kurokawa. Acceleration of
AES encryption on CUDA GPU. International Journal of Networking and
Computing, 2(1):131–145, 2012.

[29] Keon Jang, Sangjin Han, Seungyeop Han, Sue B Moon, and KyoungSoo
Park. SSLShader: Cheap SSL acceleration with commodity processors. In
NSDI, 2011.

[30] Andreas Klöckner. PyOpenCL homepage. http://mathema.tician.
de/software/pyopencl/. Accessed: 2015-04-27.

[31] Hubert Nguyen. GPU Gems 3. Addison-Wesley Professional, 2007. Chap-
ter 36: AES Encryption and Decryption on the GPU.

[32] NIST FIPS Pub. 197: Advanced encryption standard (AES). Federal Infor-
mation Processing Standards Publication, 197:441–0311, 2001.

60

http://shader.kaist.edu/sslshader/
http://www.anandtech.com/show/8446/the-state-of-pc-graphics-sales-q2-2014
http://www.anandtech.com/show/8446/the-state-of-pc-graphics-sales-q2-2014
http://mathema.tician.de/software/pyopencl/
http://mathema.tician.de/software/pyopencl/

10. CONCLUSION

[33] Aamir Majeed Usman Aziz Salman Ul Haq, Jawad Masood. Bulk
encryption on GPUs. http://developer.amd.com/resources/

documentation-articles/articles-whitepapers/bulk-

encryption-on-gpus/. Accessed: 2015-05-03.

[34] Bruce Schneier. Description of a new variable-length key, 64-bit block ci-
pher (blowfish). In Fast Software Encryption, pages 191–204. Springer,
1994.

[35] PCI SIG. PCI Express base 2.0 specification, 2007.

[36] Giorgos Vasiliadis, Elias Athanasopoulos, Michalis Polychronakis, and
Sotiris Ioannidis. PixelVault: Using GPUs for securing cryptographic oper-
ations. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pages 1131–1142. ACM, 2014.

61

http://developer.amd.com/resources/documentation-articles/articles-whitepapers/bulk-encryption-on-gpus/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/bulk-encryption-on-gpus/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/bulk-encryption-on-gpus/

A oclcrypto README

A reusable C++11 library for OpenCL hardware accelerated cryptography.

Compilation on Linux

Build dependencies (Fedora)

1 # i f you do not have bui ld t o o l s i n s t a l l e d already
2 yum i n s t a l l @development−t o o l s
3

4 yum i n s t a l l cmake boost−devel ocl−icd−devel opencl−headers

(Replace yum with dnf if you use Fedora 22 or newer.)

Build dependencies (Debian or Ubuntu)

1 # i f you do not have bui ld t o o l s i n s t a l l e d already
2 apt−get i n s t a l l build−e s s e n t i a l
3

4 apt−get i n s t a l l cmake l i b b o o s t−a l l−dev \
5 ocl−icd−opencl−dev opencl−headers

Configure step

Feel free to replace build/ with a build directory of your choice. Using the
source directory is discouraged and may not work, only out-of-source builds
are supported.

1 mkdir bui ld
2 cd bui ld/
3 cmake . . /

62

A. OCLCRYPTO README

Build step

1 cd bui ld/
2 make

Install step

1 cd bui ld/
2 sudo make i n s t a l l

The command above will install headers into $prefix/include/oclcrypto and
libraries into $prefix/lib(64). There is no automatic uninstall step. You are rec-
ommended to use the install step while packaging.

Running unit the tests

1 cd bui ld/
2 c t e s t −V

Compilation on Windows

Build dependencies

Microsoft Windows unfortunately lacks a well supported package manager, all
dependencies have to be downloaded manually.

• Microsoft Visual Studio — version 2013 is recommended

• cmake 2.6+ and cmake-gui

• Boost libraries precompiled for Windows

• NVIDIA CUDA Toolkit 5.0+

63

A. OCLCRYPTO README

Configure step

Run cmake-gui, select the repository as the source directory and select directory
of your choice as the build directory. Selecting source directory as the build
directory is discouraged and unsupported, do an out-of-source build instead.
In cmake-gui, select Configure, walk through the wizard dialogs and then click
Generate. Visual Studio solution and project files will be generated inside the
build folder.

Build step

Open the Visual Studio solution, select a desirable configuration — Debug or
Release — and click Build.

Install step

It is not customary to run the install step on Windows system. Instead, it is
recommended to bundle the built DLL files with your application.

Running the unit tests

Double-clicking oclcrypto-tests will work but the output will be lost after tests
finish. We therefore recommend running the tests from a terminal emulator of
your choice. cmd.exe will also work.

1 cd bui ld
2 oclcrypto−t e s t s . exe

Using the API

Browse the tests/ folder for sample usage of the API.

64

B Minimal Example Program

1 # include <oc l c rypto/System . h>
2 # include <oc l c rypto/Device . h>
3 # include <oc l c rypto/AES_CTR . h>
4

5 i n t main (i n t argc , char * * argv)
6 {
7 oc lc r ypto : : System system ;
8 oc lc r ypto : : Device& device = system . getBestDevice () ;
9

10 oc lc r ypto : : AES_CTR_Encrypt contex t (system , device) ;
11 contex t . setKey (" he lohelohelohelo ") ;
12 contex t . s e t I n i t i a l C o u n t e r (" 1234567890 abcdef ") ;
13 contex t . s e t P l a i n T e x t (" t e s t i n g p l a i n t e x t ") ;
14 contex t . execute () ;
15

16 {
17 auto data = contex t . getCipherText ()−>lockRead <unsigned char > () ;
18 // now we can use data [index] to a c c e s s the r e s u l t i n g c i p h e r t e x t
19 }
20

21 re turn 0 ;
22 }

65

	Introduction
	Motivation
	Prior Art
	 AES Encryption in GPU Gems 3
	 SSLShader
	 Acceleration of AES Encryption on CUDA GPU
	 Bulk Encryption on GPUs

	Design
	 Readability and Portability versus Performance
	 Choosing GPU Compute API
	 CUDA
	 OpenGL Compute Shaders
	 OpenCL

	 Programming Language
	 Target Platforms
	 Symmetric Cryptography Primer
	 AES
	 Blowfish

	 Amdahl's Law
	 GPU Compute Basics

	Implementation
	 OpenCL Abstraction
	 GPU Architecture
	 Specifics of GPU Threads
	 Memory Access

	 Benchmark Suite
	 Memory Transfer Between Host and OpenCL Device
	 Cryptographic Algorithm Context
	 Regression Testing
	 Storage of OpenCL Kernel Source Code
	 OpenCL Memory Access
	 AES-ECB
	 AES-CTR
	 AES-GCM
	 Performance Comparison of AES Modes
	 Blowfish-ECB

	Performance Evaluation
	 Optimizing Memory Access
	 Performance Comparison Across Hardware

	Integrations
	 oclcrypto-cli
	 OpenSSL Engine Integration

	Security Concerns
	Areas for Future Improvement
	 Splitting up AES Block Processing
	 Interleaving Data Transfer and Processing
	 Secure Key-Store
	 Khronos Vulkan

	Conclusion
	oclcrypto README
	Minimal Example Program

