
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Martin Preisler
<martin@preisler.me>

Unified Editor for CEGUI

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Martin Babka
Study programme: Computer Science

Specialization: Programming

Prague 2012

Many thanks to my supervisor, Mgr. Martin Babka, for helpful

advices and mentoring through the development. I would also

like to thank contributors who provided feedback, bugfixes and

valuable features.

I declare that I carried out this bachelor thesis independently,

and only with the cited sources, literature and other professional

sources.

I understand that my work relates to the rights and obliga-

tions under the Act No. 121/2000 Coll., the Copyright Act, as

amended, in particular the fact that the Charles University in

Prague has the right to conclude a license agreement on the use

of this work as a school work pursuant to Section 60 paragraph 1

of the Copyright Act.

In date

TITLE: Unified Editor for CEGUI

AUTHOR: Martin Preisler

DEPARTMENT: Katedra teoretické informatiky a matematické logiky

SUPERVISOR: Mgr. Martin Babka

ABSTRACT: This thesis presents a free software GUI application
called the CEGUI Unified Editor. The application is mainly writ-
ten in Python and is licensed under GPLv3. Its purpose is to
create and modify assets of graphical interfaces made with the
CEGUI library. Features include project management, imageset
editing and layout editing. Data for older versions of CEGUI are
transparently converted using compatibility layers. Big empha-
sis is put on ease of use, collaboration between multiple content
authors and portability.

KEYWORDS: CEGUI, editor, imageset, layout, GUI design

NÁZEV PRÁCE: Unified Editor pro CEGUI

AUTOR: Martin Preisler

KATEDRA: Katedra teoretické informatiky a matematické logiky

VEDOUCÍ BAKALÁŘSKÉ PRÁCE: Mgr. Martin Babka

ABSTRAKT: Cílem této práce je vytvořit GUI aplikaci zvanou CEGUI
Unified Editor. Aplikace je z převážné části psaná v Pythonu a li-
cencovaná pod GPLv3. Jejím cílem je tvorba a změna grafických
rozhraní realizovaných knihovnou CEGUI. Podporovány jsou mimo
jiné management projektů, editace imagesetů a editace layoutů.
Data pro starší verze CEGUI jsou převáděna za běhu pomocí vrstev
kompatibility. Velký důraz je kladen na jednoduchost používání,
možnosti kolaborace mezi více autory a portabilitu.

KLÍČOVÁ SLOVA: CEGUI, editor, imageset, layout, tvorba GUI
rozhraní

Contents

I Introduction 1

1 Why editing tools? 2

2 What is CEGUI? 3
2.1 History . 3
2.2 Philosophy . 3
2.3 Resources . 4

2.3.1 Imageset . 4
2.3.2 Font . 5
2.3.3 Layout . 6
2.3.4 Animation . 8
2.3.5 Scheme . 9

2.4 Widgets . 9
2.4.1 Foundation . 9
2.4.2 Widgets are named elements 11
2.4.3 Every tree starts with a root 11
2.4.4 Unified dimensions (UDim) 11
2.4.5 Positioning . 13
2.4.6 Sizing . 14

II Development 15

3 Planning phase 16
3.1 Previous CEGUI tools . 16

3.1.1 CEImagesetEditor . 17
3.1.2 CELayoutEditor . 18

3.2 Related non-CEGUI tools . 19
3.2.1 Qt designer . 19
3.2.2 Glade . 19
3.2.3 MyGUI Layout Editor . 20

3.3 Design goals . 20
3.3.1 Target audience . 20
3.3.2 Cornerstone requirements 21
3.3.3 Relaxed requirements . 22

4 Programming phase 24
4.1 Technologies used . 24
4.2 Tools . 25

4.2.1 Version control . 25
4.2.2 Code editing . 25
4.2.3 Bug tracking and planning 25
4.2.4 Static analysis . 25

4.3 Initial stages . 26
4.4 Engaging the community . 26

4.4.1 List of contributors . 27
4.5 Release early, release often . 28
4.6 Early adopters . 28

III User Manual 29

5 Prerequisites 30
5.1 Hardware and software requirements 30
5.2 Knowledge prerequisites . 31
5.3 Installation . 31

5.3.1 Source tarball . 31
5.3.2 Standalone executable (Win32) 31
5.3.3 .app bundle (MacOS X) 32

6 Working with the application 33
6.1 The basics . 33

6.1.1 Main interface . 33
6.1.2 Multi tab editing . 33
6.1.3 Multi mode editing . 34
6.1.4 Copy / Paste . 34
6.1.5 Project manager . 34
6.1.6 File manager . 35
6.1.7 Resizable rectangle . 35
6.1.8 Zooming . 36
6.1.9 Undo and Redo functionality 36

6.1.10 Compatibility layers . 37
6.2 Creating a project . 38

6.2.1 Creating a project file . 38
6.2.2 Project settings . 38

6.3 Imageset editing . 40
6.3.1 Overview . 40
6.3.2 Imageset properties . 41
6.3.3 Moving and resizing image definitions 41
6.3.4 Deleting image definitions 42
6.3.5 The property box . 42
6.3.6 Editing image definition offsets 42
6.3.7 Selecting overlapping image definitions 43
6.3.8 The code mode . 43

6.4 Layout editing . 44
6.4.1 Overview . 44
6.4.2 Moving and sizing widgets 45
6.4.3 Deleting widgets . 47
6.4.4 Property editing . 47
6.4.5 Reparenting widgets . 48
6.4.6 Live preview . 48
6.4.7 Custom widgets . 48
6.4.8 The code mode . 48

6.5 Command line . 50
6.5.1 ceed-gui . 50
6.5.2 ceed-migrate . 50
6.5.3 ceed-mic . 50

6.6 Settings . 51
6.6.1 Applying changes . 51
6.6.2 Back to default . 51
6.6.3 Shortcuts . 52

7 Further help 53
7.1 Common issues . 53
7.2 Getting support . 54
7.3 Help CEED . 55

7.3.1 Report bugs . 55
7.3.2 Help with documentation 55
7.3.3 Help with development 55
7.3.4 Donate money . 55

IV Developer Manual 56

8 Prerequisites 57
8.1 Knowledge requirements . 57
8.2 Getting the source code . 57

8.2.1 Branches and Tags . 57
8.3 Starting without installation . 57

9 Directory structure 59
9.1 Top directory . 59

9.1.1 maintenance script . 59
9.1.2 perform-pylint . 59
9.1.3 setup.py . 59
9.1.4 cx_Freezer.py . 59
9.1.5 copyright related . 60

9.2 bin directory . 60
9.2.1 ceed-gui . 60
9.2.2 ceed-mic . 60
9.2.3 ceed-migrate . 60
9.2.4 runwrapper.sh . 60

9.3 build directory . 60
9.4 ceed directory . 61

9.4.1 action subpackage . 61
9.4.2 cegui subpackage . 61
9.4.3 compatibility subpackage 61
9.4.4 editors subpackage . 61
9.4.5 metaimageset subpackage 61
9.4.6 propertytree subpackage 61
9.4.7 settings subpackage . 61
9.4.8 ui subpackage . 62

9.5 data directory . 62
9.6 doc directory . 62

10 Core API 63
10.1 TabbedEditor . 63

10.1.1 Responsibilities . 63
10.1.2 Life cycle . 64
10.1.3 Derived classes . 64

10.2 Undo / Redo . 65
10.2.1 Principles . 65

10.2.2 Moving in the undo stack 66
10.3 Property editing . 66

10.3.1 Usage . 66
10.4 Settings API . 67
10.5 Action API . 68
10.6 Embedded CEGUI . 69

10.6.1 PyCEGUI bindings . 69
10.6.2 Shared CEGUI instance 69

10.7 Compatibility layers . 71
10.7.1 Testing compatibility layers 71

10.8 Model View (Controller) . 71
10.9 Qt designer .ui files . 72

10.9.1 Compiling . 72

11 Editing implementation 73
11.1 Imageset editing . 73

11.1.1 Data model . 73
11.1.2 Undo data . 73
11.1.3 Multiple modes . 73
11.1.4 Copy / Paste . 73

11.2 Layout editing . 74
11.2.1 Data model . 74
11.2.2 Undo data . 74
11.2.3 Multiple modes . 74
11.2.4 Copy / Paste . 75

11.3 Animation editing . 76

12 Contributing 77
12.1 Coding style . 77
12.2 Communication channels . 77
12.3 DVCS - forking . 78
12.4 The old fashioned way - patches 78

V Conclusion 79

13 Statistics and graphs 80
13.1 Adoption . 80
13.2 Development . 81

13.2.1 Timeline . 81

13.2.2 Contributors . 83
13.3 Codebase . 84
13.4 Issue tracking . 84

14 Future development 85
14.1 Unfinished features . 85
14.2 Software is never truly finished 85

A CD attachment 90
A.1 License information . 90
A.2 Directory structure . 90

Part I

Introduction

1

Chapter 1

Why editing tools?

There are quite a few CEGUI resources described in Section 2.3. All of them
are definitely editable with just text editors. Why am I creating a WYSIWYG
editing suite for them then?

The answer is quite simple. While they are all editable and relatively eas-
ily understood by programmers and power users, artists will not touch them
without WYSIWYG tools. And it is almost impossible to make a nice GUI with
just programmers. Furthermore, making small polishing modifications is ex-
tremely hard without a visual tool because the developer has to start the appli-
cation, observe what is wrong, stop the application, edit the data by hand and
repeat. The iteration is far too long and makes polishing very time consuming.

This editing tool can bridge the gap between programmers and artists in
the team so that they can collaborate to create a working, useful and good
looking end product.

2

Chapter 2

What is CEGUI?

This chapter is focused on understanding key CEGUI concepts and being able
to think about GUI development in their terms. Take it as a very quick intro-
duction. Unless stated otherwise, this section is describing CEGUI 1.0.

CEGUI does not invent anything extremely strange when compared to other
UI toolkits but there are a couple of areas where your typical UI toolkit will dif-
fer a lot from CEGUI. The rest of the document assumes that you have gone
through this chapter or already understand CEGUI.

2.1 History

CEGUI has been started by PAUL D. TURNER in 2003 to fill the blank space of
advanced GUI subsystems for games and realtime 3D applications. It has seen
continuous development since then. For a few years CEGUI [5] was one of the
very few open source GUI systems around and quickly became the de-facto
standard choice, especially in the Ogre3D [9] community.

Even though the development went over a few bumps, the most notori-
ous being the lead developer suddenly erasing his SourceForge account and
leaving the project for a year, the other open source GUI systems have yet to
surpass CEGUI when it comes to advanced fine tuned game user interfaces.

2.2 Philosophy

API design

Designed from the ground up to be flexible and extensible. The codebase is
written in C++ centred around OOP paradigms and design patterns. Feature
patches have to be of high quality to get integrated.

3

Choice and flexibility

CEGUI is all about choice and flexibility. You can choose a renderer (OpenGL,
DirectX9, 10, 11, Ogre, Irrlicht, ...), resource provider (reading plain files is
provided as the default resource provider), image codec (FreeImage, SILLY,
DevIL, ...), XML parser (expat, Xerces, libxml, ...) and many more. For this
reason many believe that CEGUI has many dependencies while in fact it lets
you choose the dependencies according to your needs - you can run CEGUI
with just OpenGL and the inbuilt default resource provider. Granted, it is not
going to be very useful but it proves the point that there are no strictly required
dependencies.

2.3 Resources

2.3.1 Imageset

Imageset is a CEGUI-specific term, it is usually called texture atlas in other pub-
lications and APIs. Imageset is composed of a texture (or underlying image)
and a set of image definitions. Let us look at an example of one such imageset.

1 <Imageset name="OurTestingImageset" imagefile="

UnderlyingImage.png" version ="2">

2 <Image name="FirstImage"

3 xPos="0" yPos="0"

4 width="32" height="32" />

5 <Image name="SecondImage"

6 xPos="32" yPos="0"

7 width="32" height="32" />

8 </Imageset >

Figure 2.1: simple imageset XML example

Figure 2.2: visual representation of imageset in Figure 2.1

4

Let us say the UnderlyingImage.png is an image of size 64x32. The image-
set describes two image definitions called OurTestingImageset/FirstImage and
OurTestingImageset/SecondImage, both of 32x32 px in size and both laid out next
to each other as seen in Figure 2.2.

You may be wondering why this added complexity? Why not just load two
files each containing a different image and store them in two textures? The
reason for all this trouble is performance. GPUs are not that fast when it comes
to switching textures, the performance hit cannot be ignored on even cutting
edge GPUs. Even though CEGUI might just load the different files and texture
pack1 at runtime, it would be a performance hit when starting the application
and that is not acceptable.

Fortunately you can get the best of both worlds and use offline texture
packing offered by ceed-mic. This makes maintenance easier while still retain-
ing all of the performance benefits. And the texture packing process can be
slow and precise because you only do it once and then load the resulting data
over and over again quickly.

Since version 1.0 CEGUI no longer has the Imageset class in its API. Imageset
is just a file format to comfortably describe multiple image definitions on one
texture. The API only knows about the resulting images, not their relationship.

2.3.2 Font

Allows developers to describe a font in CEGUI context. If the freetype2 de-
pendency has been met it can be a TTF font. Or it can list character to image
mappings to form a pixmap font2.

1 <Font

2 name="DejaVuSans -10"

3 filename="DejaVuSans.ttf"

4 type="FreeType" Size="10"/>

Figure 2.3: TTF example

1Making a texture atlas from them automatically.
2Pixmap font is also called a bitmap font.

5

1 <Font

2 name="FairChar"

3 filename="FairChar.imageset"

4 type="Pixmap" version ="3">

5

6 <Mapping codepoint="65" image="A" />

7 <Mapping codepoint="66" image="B" />

8 <Mapping codepoint="67" image="C" />

9

Figure 2.4: pixmap font example

It is important to note here that different sizes of a font have to be defined
multiple times in CEGUI. For example if we wanted DejaVuSans in sizes 10
and 12, we would define DejaVuSans-10 and DejaVuSans-12 fonts separately.
The system rasterises vector glyphs of each font and puts them onto one or
more textures. Each texture used for a font has a multitude of rasterised glyphs
on it. When CEGUI is told to draw “Hello world!” with given font, it generates
a quad for each glyph and uses UV-coordinates of that particular glyph.

Figure 2.5: CEGUI drawing unicode text

There is bidirectional font support but that is out of scope of this document.

2.3.3 Layout

The main goal of layout files is to eliminate maintenance pain when dealing
with complex UI hierarchies. These are XML files containing necessary info
to construct a widget hierarchy, much like .ui files in Qt or .glade files in Gtk.
Even though it is possible to write layout files manually in a text editor, they
are very suitable for WYSIWYG editing.

6

1 <GUILayout version ="4">

2 <Window Name="root" Type="DefaultWindow">

3 <Window Name="child" Type="TaharezLook/

StaticText">

4 <Property Name="Position" Value="{{0,0},

{0 ,0}}" />

5 <Property Name="Size" Value="{{0.5 ,0} ,

{0.5 ,0}}" />

6 </Window >

7 </Window >

8 </GUILayout >

Figure 2.6: XML layout representing a static text child window taking one
quarter of the space of its parent

It is important to understand what layouts actually result in after loading.
WindowManager returns a single Window pointer that contains everything that
was loaded from the layout. You can use the usual means of the getChild,
isChild, ... methods to explore and use the result.

1 CEGUI:: Window* layout = WindowManager :: getSingleton ().

loadWindowLayout("SomeLayout.layout");

2 CEGUI:: Window* child = layout ->getChild("child");

Figure 2.7: querying a child window

Figure 2.8: example of a complex GUI layout

7

1 <Animations >

2 <AnimationDefinition autoStart="false" duration="

0.3" name="Example1A" replayMode="once">

3 <Affector applicationMethod="absolute"

interpolator="float" property="Alpha">

4 <!-- progression of the first keyframe will

be ignored -->

5 <KeyFrame position="0" progression="linear"

value="1" />

6 <KeyFrame position="0.264" progression="

quadratic decelerating" value="0.66" />

7 </Affector >

8 </AnimationDefinition >

9 </Animations >

Figure 2.9: XML animation example

2.3.4 Animation

Widgets (and several other classes) in CEGUI use a string-based introspection
implemented by CEGUI::PropertySet. Animations in CEGUI interpolate values
of these properties using a chosen interpolator. The interpolator always acts
on two neighbour keyframes that are next to the position of the animation.
Each keyframe has a progression3 describing whether the animation towards it
is linear, accelerating or decelerating.

Figure 2.10: visual representation animation in Figure 2.9

3Progression is a CEGUI specific term, it is also known as “easing” in other software.

8

2.3.5 Scheme

1 <GUIScheme version ="5" name="AlfiskoSkin">

2

3 <Imageset filename="AlfiskoSkin.imageset"/>

4 <LookNFeel filename="AlfiskoSkin.looknfeel"/>

5 <WindowRendererSet filename="

CEGUICoreWindowRendererSet"/>

6

7 <FalagardMapping windowType="AlfiskoSkin/Label"

targetType="DefaultWindow" renderer="Core/

Default" lookNFeel="AlfiskoSkin/Label"/>

8 <FalagardMapping windowType="AlfiskoSkin/Button"

targetType="CEGUI/PushButton" renderer="Core/

Button" lookNFeel="AlfiskoSkin/Button"/>

9 <FalagardMapping windowType="AlfiskoSkin/

ImageButton" targetType="CEGUI/PushButton"

renderer="Core/Button" lookNFeel="AlfiskoSkin/

ImageButton"/>

10 <FalagardMapping windowType="AlfiskoSkin/

RadioButton" targetType="CEGUI/RadioButton"

renderer="Core/ToggleButton" lookNFeel="

AlfiskoSkin/RadioButton"/>

11 <FalagardMapping windowType="AlfiskoSkin/Checkbox"

targetType="CEGUI/ToggleButton" renderer="Core/

ToggleButton" lookNFeel="AlfiskoSkin/Checkbox"/>

12 </GUIScheme >

Figure 2.11: short XML scheme example

Scheme is what describes how and in which order CEGUI should load re-
sources. It also defines widgets by mapping widget type, LookNFeel and pos-
sibly RenderEffect. In a way it is the glue that connects and holds all your UI
work together. Unlike several other GUI toolkits, CEGUI developers believe
that you should always know which assets you want loaded and you should
be in complete control of that. For example images are never loaded automat-
ically.

2.4 Widgets

2.4.1 Foundation

CEGUI widgets are build on top of functionality from two other classes.

9

Element

CEGUI::Element most notably implements positioning and sizing. Each ele-
ment has a list of child elements and represents a node in a tree graph. All
elements created form a forest graph. For most cases we will only consider the
subtree of the element we are working with.

Figure 2.12: element hierarchy

Keep in mind that Elements by themselves do not have names, the element
hierarchy shown in Figure 2.12 has names inside for demonstration purposes
and to make it easier to compare it to named element hierarchy shown in Fig-
ure 2.13.

NamedElement

Figure 2.13: named element hierarchy

An extension of the Element class
called NamedElement adds names
and name paths to the system.
All widgets are inherited from the
NamedElement class which means
all widgets have names and you can
query them with name paths. Wid-
gets’ names are unique only in the
context of their parent so two wid-
gets with exactly the same name can coexist peacefully. If you add them both
to the same parent you will get an exception though.

Name path is a series of named element names separated by “/”. It can
be compared to filesystem relative path. Let us consider the named element
hierarchy shown in Figure 2.13. Element nested child can be retrieved from root
by calling:

10

1 root ->getChildElement("child1/nested child");

2.4.2 Widgets are named elements

CEGUI::Window, also known as “widget”, inherits from CEGUI::NamedElement
which inherits from CEGUI::Element. It therefore has traits of both Element and
NamedElement. More features are added on top including LookNFeel skinning,
RenderEffects, input processing, ...

It is common to call a tree of widgets a GUI layout.

2.4.3 Every tree starts with a root

CEGUI will only render and allow interaction with widgets that are attached
to a particular widget tree. In 0.7 and earlier versions this widget tree started
with a widget called GUI sheet, since 1.0 it is possible to have multiple of these
trees and therefore multiple user interfaces (even projected onto objects in the
3D world). Widgets not attached to these trees are simply disregarded when
input events are handled and are not being rendered unless custom code does
that. The different user interface roots are called GUI contexts. The class imple-
menting these is CEGUI::GUIContext. One widget can only be the root of one
GUI context, no widgets can be shared between GUI contexts.

2.4.4 Unified dimensions (UDim)

In older CEGUI versions (before 0.4), there were 2 types of dimensions in the
system - absolute and relative. In version 0.4 they were merged into a single
dimension unit called UDim. UDim is simply an aggregate of the two dimen-
sion types. Merging two dimension types together allowed greater power and
flexibility in the system and better code maintainability.

Relative (scale)

Represents length relative to the parent’s size (width or height, depending on
what the UDim represents). For example horizontal 0.5 with a parent of width
100px results in 50px. Very useful in many cases, allows resolution indepen-
dent layouts, especially if combined with aspect ratio locking.

11

Absolute (offset)

This is an absolute offset by given amount of pixels, independent of any other
variable - always results in the same amount of pixels. Should be very familiar
to most users as it is used in many other widget toolkits.

Combining it all together (UDim)

By taking numbers representing both relative (scale) and absolute (offset) di-
mensions and storing them in one class we get UDim. You can think of UDim
as a way to describe length, it is used both for positions and sizes. It is impor-
tant to note that the relative component comes first.

Figure 2.14: visualisation of horizontal UDim

abs(x) = abs(p) ∗ xscale + xo f f set

Where p is parent’s size, if widget has no parent 0 is considered as parent’s
size.

Figure 2.15: converting UDim to absolute pixels

Examples

Let us say we have a widget called Parent and a child inside that widget called
Child. For the purpose of this section the Parent has absolute width of 100px
and absolute height of 200px.

1 child.setPosition(UVector2(UDim(0, 0), UDim(0, 0)));

2 // 0% of parent 's size and 100px on top of that = 100px

3 child.setSize(USize(UDim(0, 100), UDim(0, 100)));

Figure 2.16: top-left child, 100x100 px

1 child.setPosition(UVector2(UDim (0.5, 0), UDim(0, 0)));

Figure 2.17: centre-left child

12

This approach centres the widget’s left edge but it will not centre it as such.
For this to happen we have to subtract half the widget’s size as seen in the
following example.

In the next example we want our child to be centred horizontally, com-
pletely at the bottom vertically and have absolute width of 50px and absolute
height of 50px.

1 // relative puts it at the centre , absolute moves it

back half its size

2 child.setPosition(UVector2(UDim (0.5, -25), UDim (1.0,

-50)));

3 // this is a no-brainer , 50 x50px

4 child.setSize(USize(UDim(0, 50), UDim(0, 50)));

Figure 2.18: centre-bottom child, 50x50 px

Keep in mind that you are recommended to use CEGUI’s alignment prop-
erties, you could use just UDims but your code would be less readable and
maintainable. See Section 2.4.5.

2.4.5 Positioning

Figure 2.19: alignment and position (represented by arrows)

Alignment

Despite showing you how to do alignment with just UDims, doing so using
the horizontal and vertical alignment properties is more practical and easier.
Alignment basically defines what the base widget position will be, the Posi-
tion property then offsets relative to that base position. In the default settings,
alignment is set to top left, so the Position property works as expected from its
name. By aligning a widget top right, its right edge will be touching the parent’s
child content area right edge (if horizontal Position is {0, 0}). It is much easier

13

to position a widget and then deal with its size, with our previous approach
we would have to keep altering both the position and size UDims.

Offsetting with the “Position” property

After you have decided which alignment the widget should have, you can
offset it to fine tune its position. Choosing the correct alignment first will save
a lot of time.

Z-order

CEGUI has to know whether currently rendered widget should overlap any
of its siblings. To decide this, each window has a draw list of child widgets in
order of their rendering4. Clicking a widget will usually “raise” it in the render
list.

2.4.6 Sizing

There are two types of sizing in CEGUI 1.0 and previous versions - widget
sizing and Falagard sizing. The latter is considerably more powerful and offers
operators to perform calculations on sizes.

Widgets

Size of widgets is a simple vector of two UDims. See Section 2.4.4. You cannot
perform any dynamic calculations directly but you can set the relative compo-
nent to make child’s size relative to its parent.

Falagard

The Falagard skinning/LookNFeel system offers a more powerful version of
sizing, apart from just specifying relative and absolute size, it allows you to
add, subtract and perform other trivial operations with a set of values of your
choice. You can reference various sizes or hardcode constants. The structure
to hold the equation is a binary evaluation tree.

4Widgets getting rendered later overlap widgets rendered previously.

14

Part II

Development

15

Chapter 3

Planning phase

3.1 Previous CEGUI tools

There have been many attempts and even successful implementations of vari-
ous tools around CEGUI. CELayoutEditor and CEImagesetEditor were supported
all the way until CEGUI 0.7 (including). Since then “CEED” (The CEGUI Uni-
fied Editor) is the official swiss-knife type tool for all CEGUI resources. I will
briefly mention the older tools, mainly because a lot of their concepts were
transferred straight into CEED and because I believe it makes sense to men-
tion them because they served well and for quite a long time. It is undeniable
that CEED would not have looked the same if it were not for the previous tools.

16

3.1.1 CEImagesetEditor

Figure 3.1: screenshot of CEImagesetEditor 0.7.1

Written originally by MARTIN FLEURENT [19] using wxWidgets. Offers sim-
ple imageset editing without offset support. The most painful disadvantage in
my opinion is the lack of undo/redo which makes delicate editing quite hard.
Making mistakes by accidentally drag-moving is disastrous and the only so-
lution is to reload from the last saved state. Initial commit has happened in
January 2005 and it is still used in 2012, although abandoned and obsoleted by
CEED.

I have been greatly inspired by this tool, most of the core concepts of im-
ageset editing in CEED are taken directly from CEImagesetEditor.

17

3.1.2 CELayoutEditor

Figure 3.2: screenshot of CELayoutEditor 0.7.1a

Written originally by PARTICK KOOMAN [20] using wxWidgets, uses CEGUI
internally to draw the layout. Has been supported all the way until 0.7 (in-
cluding). In my experience it is not very robust but it is stable if you get all the
inputs just right.

Again, this was a source of inspiration, many concepts of layout editing in
CEED draw directly from this application.

When compared to CEED it has no undo/redo which makes it frustrating
to the point of being unusable for many people. It also lacks compatibility
layers, multi selection, widget hierarchy copy paste and code editing.

18

3.2 Related non-CEGUI tools

3.2.1 Qt designer

Figure 3.3: screenshot of Qt Designer 4.8.2

The official RAD tool from the Qt project [21]. Offers very advanced GUI lay-
out editing. This application was used to design GUI layouts for CEED and its
layout editing has been heavily inspired by it.

Instead of the multi-tab paradigm, layouts are all shown at once as separate
root widgets.

3.2.2 Glade

Figure 3.4: screenshot of Gtk Glade 3.12.1

19

Equivalent of the Qt designer in the Gtk world. Allows editing of multiple
files in separate tabs. Despite finding it clunky and unpredictable when doing
certain actions it has inspired CEED in many ways.

3.2.3 MyGUI Layout Editor

MyGUI can be thought of as a library directly competing with CEGUI. It has
similar goals and similar features [8].

A difference that stands out is that the layout editor is using MyGUI for
its controls and you are editing a MyGUI layout inside it. I found that a bit
awkward and it makes the tool very disconnected with the rest of running
applications. I am not sure what the reasoning was but I cannot see any ben-
efits of it, except maybe to demonstrate that MyGUI can be used for complex
applications.

Figure 3.5: screenshot of MyGUI layout editor

There is the familiar property editor and a create new widget panel. Widget
manipulators look and feel a lot like Qt Designer’s.

3.3 Design goals

3.3.1 Target audience

I imagine the typical user as an artistic, creative person, with strong back-
ground in image editing tools, with some knowledge of XML but next to no
knowledge of CEGUI internals.

20

This drives all the requirements. I try to make the tool fit this model user.
This proved to be very hard, especially as I do not fit this role at all. I have
no background with image editing tools, I am a power user who uses terminal
emulators more than anything and I know quite some CEGUI internals.

3.3.2 Cornerstone requirements

Before I started the project I had some general broad design goals I wanted to
accomplish no matter what. You can take them as cornerstones of CEED, no
part of the application can violate them. The reason why I obsess about these
few rules is that the previous tools violated them and it made them arguable
painful to work with. I did not want to improve the situation slightly, I wanted
to push the bar to another level.

Free software (GPLv3+)

I knew from the start that this the project is too big to be done alone and that
I would need extensive testing through the development. As I am a big fan of
free software this was a fairly easy decision.

The pain of NDAs, EULAs and so on would mitigate all potential moneti-
sation. Python applications are also very hard to close, decompiling Python
bytecode is trivial. I could have obfuscated the bytecode for each release but
again, it is a pain and yet another added complexity. Bug reports and back-
traces would also be very hard to collect.

Cross platform

As an enthusiastic GNU/Linux user I know the pain of Windows-only appli-
cations. I wanted to support at least GNU/Linux, Windows and MacOSX. I
have made deployments on other platforms possible, all used technologies are
very portable.

Easy to use and intuitive, yet powerful

These are contradicting goals, the plan was to make a reasonable compromise.
I decided to offer a flat learning curve with “verbose” GUI but offer shortcut
customisation for actions. When I could not satisfy both goals I preferred ease
of use, taking the target audience as described in Section 3.3.1 into account.

21

Multi document interface (implemented as tabs)

This was a trade-off between usability and reliability. There is no need to start
multiple applications to edit multiple files. On the other hand, any sort of crash
can affect all opened files and all unsaved changes can be lost in the worst case.

Undo redo for all actions on all files (undo stacks split by file)

Something the community repeatedly requested in the previous tools for years.
In my opinion this is a must in any productivity application. The user must
not be afraid of losing progress at any point.

Ongoing compatibility support via an extensible API

Allows people to start working on a project targeting one CEGUI version and
then migrating to a new version later in the process. Enables smooth, almost
seamless migration of files. Another motivation for this requirement was to
gain adoption quicker to gather more bug reports. Most projects were and still
are at this point (22nd July 2012) using CEGUI 0.7. Talking them into trying a
tool that is not useful for their project is very hard.

Workflow based around projects, not files

I noticed that artists were struggling with setting up paths and other variables
to have CEGUI start up properly in the previous tools. My vision was to make
a reusable, relocatable project configuration file that can be committed into a
source control repository and shared by all team members. An experienced
member in the team can set all the paths and others just pull the changes and
load the project.

Another reason was that the previous tools had global settings for paths
which allowed the user to work on only one project at a time. Switching
projects meant going through the paths and setting them to respectable val-
ues - a very time consuming process.

3.3.3 Relaxed requirements

These goals would be nice to have but are not strictly necessary.

Unify CEGUI asset editing tools

CEED can provide a foundation other community members can build editing
tools on. Eliminate the initial cost of building up embedded CEGUI facilities,

22

settings interfaces, action interfaces, etc.
Having support for all assets CEGUI can use in CEED would be great but

is very hard to achieve and is a moving target.

Integrate breakpad or other means of automatic bug reporting

This has not been implemented as of 22nd July.
The rationale is that the target group are artists, they are not usually profi-

cient at reporting technical bugs manually. Supporting a way to automatically
submit backtraces and reports of crashes would be very useful to the develop-
ers.

23

Chapter 4

Programming phase

4.1 Technologies used

Python 2

Chosen for a rich standard library, being well known and having a large com-
munity. It is really fast to develop with but in my opinion requires discipline to
avoid ending up with unmaintainable code. Bindings for Qt [11] and CEGUI
are available. It is obviously slower than languages that compile into native
code but that is not an issue for a content editing tool.

OpenGL

The only viable option because DirectX is not cross-platform. It is easy to em-
bed and well supported.

Qt 4

A proven, mature and reliable GUI toolkit. Has a very useful RAD tool called
Qt Designer.

CEGUI

The only viable choice to render CEGUI layouts without reimplementing parts
of CEGUI in Python.

cx_Freeze

Used to prevent the need for users to compile the dependencies themselves.
Allows standalone “frozen” binaries that work without any dependencies and
do not need to be installed system-wide.

24

4.2 Tools

4.2.1 Version control

Figure 4.1: use of Mercurial in
CEED

I used Mercurial for all version tracking
since it allows collaboration with many
authors without the merging pain that is
so prevalent in Subversion and CVS.

4.2.2 Code editing

Vim and Eclipse were the tools that I
wrote most of the code in. Vim provided
insufficient Python autocompletion sup-
port and ropevim [12] was not very stable
when development started. In the end
I used vrapper which provided vim-like
controls inside Eclipse. Eclipse provided
convenient auto-completion and Pylint
integration.

4.2.3 Bug tracking and plan-

ning

Mantis [7] was used for all bug tracking
and feature planning. See Section 13.4 for
statistics.

4.2.4 Static analysis

Python proved to be extremely quick to
develop with but also made it very hard
to pull off any extensive refactoring. I
ended up with broken snapshot releases
that contained trivial to fix but also easy to reproduce show-stopper bugs. In
early 2012 I found out that you can find a lot of bugs with static analysis. Un-
less the code contains monkey patching and abuse of duck typing the static
analysis tools can prevent bugs in releases. Since the usage of wildcard im-
ports makes it harder for these tools so I decided to get rid of all wildcard
imports and continuously scan the entire code base with pylint and pyflakes.

25

Many issues that would otherwise require extensive testing to be found were
fixed this way.

4.3 Initial stages

The preliminary design was done mostly during February 2011. The idea was
brewing in my head a bit earlier though. I started a forum thread to brainstorm
making an editor on 9th December 2010 [10].

First commit was pushed on Sunday, 5th March 2011. The development
time allocated for the stable “thesis” version was roughly 16 months, until
July 2012. My plan was to develop iteratively, avoid cathedral development
and employ agile development practices.

4.4 Engaging the community

I knew from the start that this project will need community contributions to
survive in the long run, so I tried to embrace contributions. Even though I
wrote the overwhelming majority of the code, I value all patches, bug reports
and suggestions given to me.

26

4.4.1 List of contributors

• JORGE AVILA - art, user interface advices

• MARTIN BABKA - supervision of the thesis, advices

• ENIKO - ported rectangle packing code to Python

• MARKUS EWALD - author of the rectangle packing code used in ceed-mic

• MICHAEL KAPELKO - bugfixes for Python 2.6

• CHARLES MATTEI - art, user interface advices

• LUKAS MEINDL - Windows QA, feedback

• ERIK OGENVIK - testing, feedback

• ADAM PREISLER - testing, feedback

• MARTIN PREISLER - main developer

• PATRICK ROBERTSON - settings interface improvements

• PAVEL ŠPAČEK - QA, testing, feedback

• STEFAN STAMMBERGER - author of recently used menus

• PAVLOS TOUBOULIDIS - property inspector and user interface improve-
ments

• CHRIS TRENKAMP - file monitoring, better error messages when files can-
not be opened

• PAUL D. TURNER - MacOS X fixes and releases

Figure 4.2: contributor list

See Figure 4.2 that lists contributors in alphabetical order with their contribu-
tions roughly listed. The list has been assembled on 28th July. For more info
about contributions of a particular person, please run:

1 hg log --user Contributor

in the repository of the project.
I would like to thank all of the contributors, the project would be nearly

impossible without their valuable inputs. See Section 13.2.2 for a breakdown
of contributions.

27

4.5 Release early, release often

Even though I was not confident that the tool could be usable for production in
the initial stages, I knew from previous experience that I had to make releases.
Having many soft deadlines forced me to do a lot more planning and kept me
doing continuous development - many small steps leading to the final goal. I
named all releases “snapshotX” where X was the number of the release. This
reinforced the fact that they were just developer snapshots and not intended
for production1. I kept doing standalone win32 binaries for snapshots because
I noticed majority of my users are using Windows and many of them could not
get the editor running because of dependency problems...

4.6 Early adopters

My goal was to get as much adoption as possible to give me more bug reports
and therefore improve quality. That was the reason why I sometimes worked
on features that were not outlined in the requirements but were requested by
early adopters. Making early adopters happy helped spread the word which
brought even more adopters.

The editor has been used by at least three teams working on commercial
games. Both teams supplied amazing feedback and bug reports, I would like
to thank them for that! I will not list the names because I am not sure whether
the games have been announced yet.

Several open source teams adopted the editor in production as well, the
most notable being Summoning Wars [13] and The Worldforge Project [14].
They provided data I could test with which helped me make the layout editor
usable for creating 0.7 compatible assets.

1The snapshots were used for production though, as mentioned in the following section.

28

Part III

User Manual

29

Chapter 5

Prerequisites

5.1 Hardware and software requirements

Operating system:

• GNU/LINUX system with X11

• WINDOWS XP and newer

• APPLE MACOS X 10.6+

• *BSD system with X111

Hardware:

• At least Intel Pentium 4 or AMD Athlon XP

• 512 MB of RAM

• Graphics card capable of accelerated OpenGL with FBO support

• Display area of at least 800*600 px available to the application2

Dependencies:

• PYTHON 2.7

• QT 4.7 or 4.8

• PYSIDE – python bindings for QT

• CEGUI 1.03

• PYCEGUI 1.0
1CEED has been reported to work on BSD but this platform is not officially supported.
2Vertical screen estate of at least 800 px is recommended.
3CEED supports CEGUI 0.7 data as well but uses 1.0 internally.

30

5.2 Knowledge prerequisites

To use the Unified Editor, you have to have some basic knowledge of how
GUI systems work in general. It would be best if you were familiar with how
CEGUI works but Qt or GTK knowledge can be transferred without problems.

For editing assets in code mode you should understand the format in ques-
tion, the editor makes no effort to make code editing easier with highlighting
or any code references (it’s a planned feature though).

There is no need to understand programming in general to use CEED ef-
ficiently, the application is targeted at artists. You may still need help from a
fellow programmer about setting up the project file.

5.3 Installation

The application is currently distributed as a source tarball that works on all
supported platforms (if you install the dependencies). Furthermore, binary
standalone builds are made for Windows and Apple MacOS X. This only ap-
plies to official releases, mercurial code is not being built regularly.

5.3.1 Source tarball

First, make sure you have all dependencies installed. Refer to guides of the
dependencies on how to install them.

Download the tarball and extract it. You should end up with a folder called
CEED-${version}. Go into this folder in CLI4 and call python setup.py install
as administrator5. This should trigger the installation. After the installation
finishes, run ceed-gui to start the application.

5.3.2 Standalone executable (Win32)

You do not have to install anything in this case (all dependencies are bundled),
just unzipping the archive and running ceed-gui.exe will make the application
start. If this is not the case, please report it as a bug.
If you have made custom changes to CEGUI that you use with your applica-
tion, this distribution method might not work well for you! Upstream CEGUI
is used for the build.

4Use terminal emulator of choice on UNIXes, cmd.exe on Windows.
5Use su/sudo on UNIXes, “Run as administrator” on Windows.

31

5.3.3 .app bundle (MacOS X)

CEED behaves like a proper MacOS X native application. Double clicking will
start the GUI, dragging it to Applications will install it. If you use multiple
versions they might share settings!
If you have made custom changes to CEGUI that you use with your applica-
tion, this distribution method might not work well for you! Upstream CEGUI
is used for the build.

32

Chapter 6

Working with the application

6.1 The basics

6.1.1 Main interface

This interface hosts all the tabbed editors and provides functionality that is
shared by all the editors. It surrounds the application.

Figure 6.1: overview of the interface

6.1.2 Multi tab editing

The centre of the application consists of tabs, each tab represents one opened
file. CEED will strive not to have two tabs for one file opened, if you try to
open one file twice it will just activate the existing tab for the file. Any of the
tabs can be closed on request. If there are unsaved changes the user will be
asked what to do about them.

33

Figure 6.2: tabs offer reordering and a
context menu

Reordering tabs is also possible
using mouse drag-moving. The in-
terface including dock widgets, tool-
bars, etc... may change when switch-
ing tabs. Switching tabs does not
count as an undo action, it is instead
just a context change action.

6.1.3 Multi mode editing

Figure 6.3: switch modes by clicking
the bottom mode tabs

For some file types (mostly .image-
set and .layout) it makes sense to edit
in both visual mode as well as code
mode (raw XML). Undo and redo are
transparent between mode switching
as mode switching counts as an undo
action. You can switch modes by
clicking on the bottom tab pane. All
files are opened in Visual mode by default. Code editing is regarded as a crutch
mechanism, a tool to make tedious mass changes or work around problems
with Visual mode.

Code editing is currently very simplistic and does not even have syntax
highlighting! Please also note undo/redo is very wasteful when it comes to
code editing and long editing sessions may end up with a lot of RAM being
allocated.

6.1.4 Copy / Paste

Many things you can select in the editor can be copied/cut and pasted else-
where. This is a very useful workflow feature and works even across multiple
CEED instances. You can for example have 2 different projects and copy parts
of layouts between them. Both projects have to have all widget types that or
copied of course!

The default shortcuts are the expected ones depending on your platform.
Ctrl + C for copy on Windows and GNU/Linux, Cmd + C on Mac OS X.

6.1.5 Project manager

34

Figure 6.4: project manager dock wid-
get

Allows user to manage a project
(project is a set of related files),
browse through files, open any file
for editing, add new or existing files
to the project and remove files from
the project. Most of the project man-
aging takes place in the Project Man-
ager dock widget. The dock widgets
lists all files currently in the project and allows user to edit/view them by dou-
ble clicking them. Right clicking brings up a context menu with the ability to
add files to the project or remove currently selected files from the project. The
main reason for project management is to have CEGUI resource path settings
shared for all the files in the project. The project files are designed to be com-
mitted to a repository and used on different computers. All paths are stored
relative to the project file, even though you may see absolute paths in the editor
itself, they get converted to relative paths in the end.

6.1.6 File manager

You are advised to use project manager if at all possible, it will improve work-
flow, especially in bigger teams.

In addition to the project manager, CEED allows you to browse the filesys-
tem and simply open files for quick editing. Please note that this will only
work for some file types (it cannot work for schemes and layouts because
CEGUI paths are not set if project is not loaded). This is again contained in
a dock widget that hosts the functionality. It has a very simplistic interface,
displaying current path, allowing the user to go one level up the hierarchy
and simply listing files and folder in the current path.

Double clicking a file opens it for editing.
Furthermore, this dock widget will watch for changes on the filesystem and

refresh accordingly.

6.1.7 Resizable rectangle

A construct used reused in many places in CEED. Represents a rectangular ob-
ject that can be resized and/or resized. It offers features that would otherwise
have to be reimplemented in many places. The main inspiration was GIMP’s
selection rectangle [6]. Can be moved by dragging the middle area. There are
eight areas that resize the rectangle if you drag them. These are called resize

35

handles - four edges and four corners. They get highlighted when you hover
over them.

Figure 6.5: resizable handles appear when you hover over edges/corners

6.1.8 Zooming

To make editing easier and possibly more precise, user is allowed to zoom in
the editors that support it. Both imageset and layout editors support zooming.
By default you can zoom by clicking the zoom icons in the toolbar as seen in
Figure 6.1 or holding the Ctrl key and scrolling with your mouse wheel. You can
zoom out to 50% to get an overview or zoom in multiples of two. If you are at
the zoom level of 100%, one zoom in will change that to 200%, another zoom
in will change it to 400%, etc.

The zoom level will in no way affect your data, it will only change the
context you are editing in. It therefore is not an undo action.

6.1.9 Undo and Redo functionality

Since most tabbed editors allow undo and redo, the main interface allows you
to perform these actions via shared means in the top toolbar. Undo/redo are
per-file, so whenever you switch tabs the undo stack gets changed to a com-
pletely different stack. If you for example do changes to file A, then switch
to file B, do some changes and keep pressing undo, only changes to file B gets
undone, You have to switch to A again and undo there. Selections are not
undoable as they do not count as undo actions. There is one very important
aspect that breaks the “context switching is not an undo action” rule. Switch-
ing editing mode is an undoable action because the changes of XML code do
not make sense in visual mode.

36

Undo and Redo can be very powerful and allows free experimentation
without fear of losing data. Apart from possible bugs in the applications, all
things that affect data are undo actions and are undoable. Use that fact to your
advantage!
Even with undo/redo, you are advised to use version control or other mecha-
nisms. Undo/redo actions are lost when you close the application!

6.1.10 Compatibility layers

CEED has a facility called compatibility layers which allows it to work with
data from many versions of CEGUI. In a nutshell these layers allow you to
transform raw data from version to version. Each layer has source and target
data types that describe the transformation. Layers can be chained, if there is
a path to go from data type A to B and B to C, it is possible to transform A to C.

Each time you are editing a file, you can right click the tab to bring out a
context menu and see the exact data type you are editing, see Figure 6.2. It
is not currently possible to change the data type of a file that’s been opened,
CEED will attempt to detect the data type when you are opening the file and
ask you if it cannot decide for sure. Make sure you set the correct CEGUI
target version as described in Figure 6.7. The CEGUI version will affect what
data type newly created files in CEED will have.

You can also use all compatibility layers using the shipped CLI tool called
ceed-migrate. Call ceed-migrate –help for more info.

37

6.2 Creating a project

6.2.1 Creating a project file

Figure 6.6: first step of creating a
project

You will need to create a project
for any serious editing with CEED.
There are some quick hints about
how to do this in the Quickstart Guide
but we will dig into more details
here.

The first step is to choose File »
New » Project. The dialog in Fig-
ure 6.6 will appear. The most im-
portant choice you have to make is
where to store the project file. It is
recommended to store it in a direc-
tory made exclusively for the project. Doing so ensures that it is relocatable.
You can optionally instruct CEED to auto create resource directories similar to
the CEGUI sample datafiles directory structure.

6.2.2 Project settings

Project settings window will pop up after the project file is created. You can
always return to the project settings window to change settings later. It is rec-
ommended to get the basics right when creating the project as that will prevent
many headaches1. Most of the options are documented in the interface as can
be seen on the following screenshots.

1CEED uses the project to choose versions of new files for example.

38

Figure 6.7: project settings window

All paths stores in the project file are relative to the parent directory of the
project file. This allows you to move the project directory around and share it
with your co-developers. First thing you need to choose is the base directory.
This will by default be the same as the folder your project file is in. You can
however set it to the base of your CEGUI resources and the rest of CEGUI
resource paths will be relative to it. This allows to switch paths around quickly.
If you are unsure, just leave it as it is.

The next thing you need to choose is the target CEGUI version. CEED
supports CEGUI 1.0 and 0.7. This has very drastic consequences, especially on
any resource files you create from scratch, so make sure you set it correctly.

Following is the section with paths to CEGUI resource directories. If you
use CEGUI’s directory structure (the one used in samples), you can simply fill
or browse for the first editbox and press apply. Otherwise you will have to fill
the resource paths manually. Even though the paths are shown as absolute,
they are stored relative to the project’s base directory, which again is stored
relative to parent directory of the .project file. This is what makes the whole
project directory relocatable.

39

6.3 Imageset editing

An imageset is practically a texture atlas, a technique used to put many smaller
images on one texture to drastically speed up rendering. Each imageset has a
name, underlying texture file path, autoscaled settings, native resolution and
a set of images. “Image” means a rectangle selection of the underlying texture.
Each of these images has a position (x, y), width, height and an offset (x, y).

Opening existing imagesets for editing does not require you to have a project
opened. The underlying texture file is sought after in the same directory the
.imageset file resides in. If a project file is opened the appropriate resource
directory is used to search for the files instead.

6.3.1 Overview

A dock widget containing basic imageset properties and a list of image defi-
nitions shows up upon opening an imageset file. The centre part of the editor
shows the underlying texture and rectangles describing geometry of image
definitions. Image definitions can be selected (including multiple selection).
Selection works in both the image definition list and the editor’s centre part
(rubber band selection). Both selections are synchronised. Names of image
definitions will be shown as labels when the definitions are selected. This can
be disabled in settings, see Section 6.6 for more details.

Figure 6.8: rubber band selecting in the imageset editor

40

6.3.2 Imageset properties

As can be seen in Figure 6.8, imageset itself has several properties that affect
all image definitions defined in it.

The name of the imageset means different things depending on which ver-
sion of CEGUI you are targeting. It is simply a prefix of each of the defined
image definitions’ names in CEGUI 1.0 with “ImagesetName/ImageName”
being the full name of a single image definition, in 0.7 image definitions are
strictly tied to imagesets and are referenced using “set: ImagesetName image:
ImageName”.

Underlying texture is the texture that will be used to draw the imagery of
image definitions inside the imageset.

The auto scaled settings affects how the imageset’s image definition sizes
will be affected on various resolutions. In a nutshell, with disabled auto scaling
the image definitions will always have exactly the size they are defined with,
with any other auto scaled settings, the size will be affected by the resolution
CEGUI is currently rendered in (see CEGUI documentation for explanations of
each setting). Please note that only “false” and “true” settings are implemented
in CEGUI 0.7, the rest are new in CEGUI 1.0.

Native resolution is the resolution this imageset was created for in simpli-
fied terms. If the target resolution is different, the image definitions may be
scaled, depending on the auto scaled settings.

6.3.3 Moving and resizing image definitions

You can move selected image definitions by dragging or using keyboard (WSAD
scheme moves them one pixel in each direction, pressing Ctrl moves them 10
pixels in each of the directions). You can also resize the image definitions by
pressing Shift and one of the WSAD keys, this moves just the bottom right ver-
tex of the image definition rectangle. Rectangles are “resizable rectangles”, see
Section 6.1.7 for more details. This will only delete the rectangle definitions of
the images in the imageset, it will not alter the underlying texture in any way.

41

6.3.4 Deleting image definitions

Figure 6.9: selected images context menu

You can delete a selection of image definitions by selecting, right clicking
and choosing Delete in the context menu or pressing the Delete key. This will
only delete the image definitions, it will not alter the underlying texture in any
way.

6.3.5 The property box

Figure 6.10: image property
box

To allow precise adjustments, user can alter all
the values of selected image definition manu-
ally using the property box. Just select exactly
one image definition and the property box will
get filled with its values. Altering them will
immediately preview the changes in the visual
editing pane. All editing has undo/redo sup-
port, see Section 6.1.9 for more details. Editing
image definition properties in the property box should always be preferred to
editing raw XML in code mode, it is safer and has better and faster undo/redo.

6.3.6 Editing image definition offsets

Offsets describe where the 0, 0 position is in the image definition. By default it
is at the top left corner of the rectangle of the image definition. You may want
to adjust it, especially if you are working with crosshairs, cursors or window
edge imagery. Enable editing of offsets using the context menu (see Figure 6.9)
and red offset crosshairs will appear, move them around to alter the offsets.
You can alternatively use the property box to edit offsets manually using the
keyboard, see Section 6.3.5.

42

6.3.7 Selecting overlapping image definitions

Sometimes the image definitions overlap in a way that would prevent you
from selecting the image definition you need. You can select any image def-
inition in the overlapping area and use the Cycle Overlapping Images feature.
It will cycle all overlapping image definitions, just stop when the desired one
is selected. The order in which the overlapping image definitions are cycled
is not well defined, just cycle until the right one is selected. You can see the
option in the context menu in Figure 6.9.

6.3.8 The code mode

Raw editing of the XML is supported in imageset editing, click the “Code” tab
in the bottom to switch to it. Please note that the raw format will always be the
native CEGUI 1.0 format even if you selected CEGUI 0.7 as the target version.
The conversion will only happen when you save to a file.

43

6.4 Layout editing

The word layout has two meanings in the CEGUI world so I will first disam-
biguate it. The first meaning is a hierarchy of widgets, the layout describes the
way widgets are laid out as an n-tree. The other meaning is a widget able to
lay out its child widgets during runtime, this is more precisely called Layout
Container. I will use the word “layout” with the former meaning in the rest of
this section unless stated otherwise.
Each layout starts with a root widget and can only have exactly one root wid-
get. If you need more top widgets, just put them into a DefaultWindow and use
the DefaultWindow as the root widget. When CEGUI loads the layout it returns
this root widget. Widgets always have a name, this name only needs to be
unique in the parent in CEGUI 1.0, it has to be globally unique in CEGUI 0.7.
Saying “widget Parent/Child/SubChild” means a widget that is a child of the
“Child” widget and the “Child” widget is a child of the “Parent” widget. This
notation is called the name path.

6.4.1 Overview

Upon opening a layout, dock widgets containing widget hierarchy, available
widgets to create and selection properties show up. The centre part of the
editor shows the layout as rendered using CEGUI. Widgets can be selected and
unselected by clicking on them, rubber band selection is not available in the
layout editor. Coloured lines are shown to outline how the widgets are sized
and positioned. Properties of selected widget(s) are shown and are available
for editing in the bottom right part of the screen.

There are no global properties of the GUI layout, the only objects holding
information are the widgets.

44

Figure 6.11: selecting a window when layout editing

6.4.2 Moving and sizing widgets

Selected widgets can be moved around by dragging. Resizable rectangle is
used for implementation of the widget manipulators, see Section 6.1.7 for more
details.

Unified dimensions

Both position and size have two components in CEGUI - scale and offset. Scale
represents the dimension relative to the parent, offset is absolute pixels. Both
can be positive or negative, both are stored as floating point numbers.

Figure 6.12: unified dimen-
sions of a button

There are several tools in CEED to deal
with unified dimensions without having to
edit them manually in the property editor
(see Section 6.4.4). By default CEED affects
the offset component, meaning you are mov-
ing everything in pixels. It is recommended
to learn relative positioning and sizing, it is a
very powerful tool to make resolution inde-
pendent layouts. Press the A key to switch which dimension component you
are affecting with your moving and resizing.

Use Normalise Position and Normalise Size to “clean up” the dimensions in
your layout. Default shortcuts are the D key and S key respectively.

Whenever you select a widget, its position and size are shown by the means

45

of coloured lines. Red part of the dimension represents the scale component
and green part represents the offset component.

Snap to grid

It is really hard to keep your widgets aligned and it is quite easy to spot for
your users that they do not align properly. CEED has a tool to help you align
your widgets to a grid. You can enable it by pressing the Spacebar key or by
clicking the Snap to grid icon. If it is activated, a grid will be shown whenever
you drag move any widgets and your movements will snap to it. All snap to
grid happens only between parent and its child widgets, so the grid will be
only shown in the dragged widget’s parent.

You can change snap grid settings in CEED’s application settings, see Sec-
tion 6.6.

Figure 6.13: snapping to grid, zoom at 200%

Alignment

Position of a widget in CEGUI is relative to a certain pivot. By default this pivot
is the top left corner of the widget’s parent widget client area. You can change
this by selecting a different alignment. Choosing Centre for both horizontal
and vertical alignments.

Figure 6.14: alignment of widgets

Minimum and maximum size

Another tool to help you create resolution independent layouts. Consider you
are using relative sizes and your top with is 50% of the screen width. You can
place a limit that the widget should be 50% of the screen width but not exceed
1000px by setting the MaxSize property to (0, 1000).

The maximum and minimum sizes are unified dimensions but there is one
big difference: The first component is relative to the screen dimension, not to
the widget’s parent!

46

Aspect ratio

This feature was added in CEGUI 1.0 and it is not available in earlier versions.
The compatibility layer will simply strip it and the behavior will be as if the
AspectMode was set to Ignore.

Is a tool to make sure your UI is not stretched in any way in a case where
your display’s aspect ratio differs from that of your user. Choose the desired
AspectMode first using the property editing (see Section 6.4.4). There are three
modes you can select: Ignore, Shrink or Expand. Ignore ignores your chosen
aspect ratio and does not affect the sizes in any way. Shrink makes sure to
comply to the aspect ratio by shrinking one of the dimensions until the ratio
is satisfied. Expand behaves similarly but expands one of the dimensions until
the ratio is satisfied.

The dimension guides will reflect this by either drawing the size guide too
long or too short for shrink and expand respectively.

Figure 6.15: aspect ratio demonstration

6.4.3 Deleting widgets

Selected widgets can be deleted by right clicking them in the widget hierar-
chy dock widget to bring the context menu and choosing Delete or by simply
selecting them and pressing the Delete key. Please note that deleting a widget
also deletes all its descendants - children, children of children, ...

6.4.4 Property editing

A well implemented CEGUI widget should expose most of its properties using
the CEGUI::PropertySet class. All properties exposed as such will be editable
within the editor in the Selection Properties dock widget.

Simply select a widget, scroll through its properties in the dock widget,
choose one and double click it to alter it. Such action will be recorded as an
undo action and will be undoable, see Section 6.1.9 for more details. You can use
the property filter to quickly find the property you are looking for by name, see
Figure 6.16.

Some of the properties will show an expandable icon on the left, these are
usually complex properties made up from multiple pieces. Clicking this icon
will expand the property and allow you to edit its components.

47

Figure 6.16: recursively ex-
panded Area property

It is possible to edit properties of multiple
widgets but properties will display <multi-
ple values> if there is no single value in all of
them for that property.

6.4.5 Reparenting widgets

Reparenting means changing parent of a
widget or an entire hierarchy of widget. This
can be done in the widget hierarchy dock
widget, pick a widget there, drag it and drop
it into a widget that should be its new parent.

6.4.6 Live preview

You can preview your widget layout includ-
ing limited interaction by clicking the Live
preview tab in the bottom. It is possible to
then interact with your GUI as if it were in
your application. Nothing you do in Live preview will affect the edited layout.

6.4.7 Custom widgets

Figure 6.17: previewing a
layout

The editor loads all schemes in the project so
standard widgets get registered if you have them
in your scheme. The scheme will be able to load
a custom widget set module. The custom widget
set module is able to add widget factories so you
can even add custom made widgets and have the
editor edit them.

6.4.8 The code mode

Raw XML editing is supported in layout editing,
click the Code tab in the bottom to switch to it.
Please note that the raw format will always be
the native CEGUI 1.0 format even if you selected
CEGUI 0.7 as the target version. The conversion
will only happen when you save to a file.

48

Please note that there are several errors that you can make in the layout
XML that will go silently ignored! This is an issue which CEED cannot solve,
it is CEGUI that ignores this input. Examples include various property values,
for example the ColourRect, invalid values will result in black.

XML editing should only be used as the last resort!

49

6.5 Command line

While most of this manual talks about the main executable - ceed-gui - two
more are offered in all releases. As with most command line tools, inbuilt
help is offered and it would make no sense to repeat it here. Instead, a brief
overview of some capabilities of the tools will be presented.

6.5.1 ceed-gui

The main use of this executable is to bring up the CEED GUI interface. Most
people will probably call it with no command line arguments at all. Some of
the supported arguments might be very useful though, you can for example
call ceed-gui so that it immediately loads a certain project and opens specific
files.

Call ceed-gui --help for more info.

6.5.2 ceed-migrate

Allows you to use compatibility layers as described in Section 6.1.10 without
having to start the main GUI app. This can be very useful when you want to
migrate all your assets to a new CEGUI version. You can also incorporate it
to your workflow if you have to support multiple CEGUI versions for some
reason.

Call ceed-migrate --help for more info.

6.5.3 ceed-mic

Makes it possible to build a rectangle packed imageset out of given data. Source
data is a MetaImageset. In a nutshell you can specify separate image files or
even imagesets and ceed-mic will make just one imageset with one underly-
ing texture out of them. It will make effort to have the resulting texture as
small as possible.

See data/samples/AllStockImagery.meta-imageset for an example.
Call ceed-mic --help for more info.

50

6.6 Settings

Go to Edit » Settings to open the settings window. Note that these settings are
only persistent on the user’s machine, they are not stored in a project file! If
you make changes that you want your colleagues to share, you will have to
tell them how to replicate these changes on their machines.

Figure 6.18: settings window

6.6.1 Applying changes

Most of the settings will apply immediately after pressing the Apply button.
Some will require you to close and open the edited file again and some will
even require you to restart the application. If you experience glitches related to
a settings change a restart will very likely cure them. We would still appreciate
it if you reported them as a bug though, for further detail see Section 7.3.1.

6.6.2 Back to default

Feel free to change settings and experiment with them. Whenever you regret
making some setting, click the Reset icon as seen on Figure 6.18 to reset it to its
default value. Please note that same rules about applicability of the settings
apply when you reset them to default. In some cases you will even have to
restart the application.

51

6.6.3 Shortcuts

Figure 6.19: changing key sequence for
an action

Most of the actions in CEED are us-
ing the Action API and can be trig-
gered using shortcuts. The default
shortcuts are set depending on your
platform. Go to Edit » Settings and
choosing Shortcuts in the tab header.
Clicking the button in the middle will
allow you to press your desired com-
bination to change to it. Only com-
bination keypresses are supported,
preferably with modifier keys. Discrete sequences or key chords cannot be
used for shortcuts.

52

Chapter 7

Further help

7.1 Common issues

Cannot find PyCEGUI

Assuming you are using a release source tarball, make sure you have installed
PyCEGUI system-wide. Check the PyCEGUI.{so,dll} with ldd -r or depends.exe
to check whether it can find all required libraries.

You can also use the runwrapper.sh script if you use a UNIX system but
that is not officially supported.

Cannot find XYZ

Install dependency XYZ, all dependency upstreams offer binary installers with
the exception of PyCEGUI. Check with ldd -r or depends.exe to see whether the
libraries can find their dependencies.

Only widget outlines move when I pan the layout editing view-

port

Confirm that zooming also only moves the outlines.
Make sure your GPU supports FBO and that it supports it properly. The

solution is to get better OpenGL drivers.
This may also be a newly introduced bug that may be worth reporting. Use
common sense.

OpenGL invalid enum exception

Make sure your GPU supports FBO. Other than that it is usually a driver bug.
I have witnessed this in VirtualBox VM. The solution is to get better OpenGL

53

drivers.
This may also be a newly introduced bug that may be worth reporting. Use
common sense.

Cannot start ’hg’

This is just a warning and you need not be concerned with it. Mercurial is
used to get the tip revision hash for error reporting purposes. It will simply
“unknown” in cases where it is not possible to get the hash.

I only see a black viewport with outlines instead of my widgets!

Make sure the widgets are set as visible! Many people create layouts with
widgets hidden and then show them selectively after they are loaded. CEED
will not display hidden widgets, it will only display their outlines.

Imageset editing is unresponsive

There are two configurable modes of drawing the imageset editing viewport.
The default one uses OpenGL and redraws the entire viewport when any re-
draw is needed. It has a predictable speed and does not stall often. It is suitable
for all but the biggest imagesets.

In cases where you edit really big imagesets and/or have a slow GPU you
can use the alternative mode. It uses software QPainter and only redraws por-
tions that need it. This makes it a bit unpredictable with occasional stalls but it
will be faster if you edit in a small area.

The settings option is Settings » Imageset editing » Use partial drawing updates.
See Section 6.6 to learn how to alter settings.
Changing sizing modes while resizing/moving widgets

7.2 Getting support

Community support is provided on the following channels. No official com-
mercial support is offered.

• forum: http://cegui.org.uk/phpBB2

• IRC: #cegui on irc.freenode.net1

• wiki: http://cegui.org.uk/wiki

1See http://freenode.net for information about the FreeNode network.

54

http://cegui.org.uk/phpBB2
http://cegui.org.uk/wiki
http://freenode.net

7.3 Help CEED

7.3.1 Report bugs

Software gets complex really quickly, nobody is pretending that CEED does
not have any bugs. If you find some we would really appreciate you reporting
them using the CEGUI bug tracker2. Please make sure the bug has not been re-
ported already by searching the bug tracker before submitting the ticket. Fea-
ture requests are also welcome.

Please note that there are no assurances on whether and when particular
tickets get resolved, we do our “best effort” to fix tickets but cannot possibly
give you a reliable time frame.

7.3.2 Help with documentation

Documenting is a very hard task, any help is welcome in that area. The usual
starting point is editing the CEGUI wiki3. If you feel up to it you can also send
patches to the manuals, they are written in LYX so it should not be a problem
to correct typos or even add new content.

7.3.3 Help with development

CEED is a community project, GPLv3+ licensed. That means that anyone can
contribute! See the Developer manual for more info.

7.3.4 Donate money

If you would like to help us spend more time developing the software you
use and hopefully like, consider making a donation. Every amount counts, no
matter how small.

Donating to the main developer of CEED is possible at
http://sourceforge.net/donate/?user_id=559904

You can also donate to the CEGUI library itself using
http://sourceforge.net/project/project_donations.php?group_id=93749

Both types of donations require a PayPal account.

2We have a Mantis tracker at http://cegui.org.uk/mantis.
3Wiki of the project is at http://cegui.org.uk/wiki.

55

http://sourceforge.net/donate/?user_id=559904
http://sourceforge.net/project/project_donations.php?group_id=93749
http://cegui.org.uk/mantis
http://cegui.org.uk/wiki

Part IV

Developer Manual

56

Chapter 8

Prerequisites

8.1 Knowledge requirements

Because of size constrains, I will not cover Python, PySide, Qt and CEGUI API.

8.2 Getting the source code

1 $ hg clone http :// crayzedsgui.hg.sourceforge.net :8000/

hgroot/crayzedsgui/CEED

8.2.1 Branches and Tags

• default - unstable forward development, likely to be based on unstable
CEGUI

• snapshotX - development snapshots, based on unstable CEGUI, should
be considered tech previews

• *-devel - feature branches, are expected to be closed and merged into de-
fault at some point

8.3 Starting without installation

This section is UNIX only!
It is extremely valuable to start the editor without installing it. You can do

so by using the runwrapper.sh script in the repository. This script will spawn a
new shell that will have environment set so that CEED finds its own modules
and PyCEGUI. By default it assumes the following directory structure:

57

1 $prefix/CEED/bin/runwrapper.sh

2 $prefix/cegui_mk2/build/lib/PyCEGUI.so

If your directory structure looks differently you need to alter the script.

58

Chapter 9

Directory structure

9.1 Top directory

9.1.1 maintenance script

Provides means to compile Qt .ui files, build documentation, fetch newest
CEGUI datafiles and make a tarball for CEED releases.

maintenance-temp is a directory with various temporary data that mainte-
nance script needs to run.

9.1.2 perform-pylint

Runs pylint over the codebase, results will be stored in pylint-output. It is
imperative to run this script, especially before releases, it often uncovers nasty
bugs. Even though pyflakes has no helper script to run it, you can run it as well,
there are no configuration or such files required.

9.1.3 setup.py

Used to install CEED system-wide. Running python setup.py install as root
will get the job done. Make sure you already have all the dependencies in-
stalled.

Can also be used to create tarballs, the maintenance script may be better for
that though, see Section 9.1.1.

9.1.4 cx_Freezer.py

This is a setup.py script that is adapted for freezing the application into a bun-
dle using cx_Freeze. The resulting bundle does not need any dependencies,

59

not even Python. Tested on Windows 7 and GNU/Linux distros, both 32bit
and 64bit.

Might need copying of some dependencies the script fails to pick up!
Please see the cx_Freeze documentation [22] for more information.

9.1.5 copyright related

Also includes the AUTHORS file with CEED contributors and several COPY-
ING files of libraries we bundle in Windows and MacOS X builds.

9.2 bin directory

All contents are executable, these are entry points to various functionality of
CEED.

9.2.1 ceed-gui

Starts the CEED interface. Provides several CLI options that may be very use-
ful for development, especially auto opening of projects and files after start,
see ./ceed-gui –help.

9.2.2 ceed-mic

This is the CLI metaimageset compiler, see the User manual for more info.

9.2.3 ceed-migrate

CLI interface to the compatibility machinery in CEED, can be useful for testing
newly developed layers, see ./ceed-migrate –help for more info.

9.2.4 runwrapper.sh

Can be used to start CEED without having to install it, see Section 8.3 for more
info.

9.3 build directory

Contains results of cx_Freeze build process, see Section 9.1.4 for more info.

60

9.4 ceed directory

This is where the bulk of the codebase resides. The directory is a Python package
and none of its files should be executable.

9.4.1 action subpackage

Implements the Action API and defines basic global actions.

9.4.2 cegui subpackage

Wraps Embedded CEGUI (see Section 10.6 for more details). Also provides
base classes for CEGUI widget manipulators and all the machinery that they
require - GraphicsScene, GraphicsView, ...

9.4.3 compatibility subpackage

Implements the Compatibility API, contains implementations of all the stock
Type Detectors and Compatibility Layers.

9.4.4 editors subpackage

This subpackage encapsulates all editing functionality within CEED. All classes
that inherit from TabbedEditor except the convenience wrapper classes should
be implemented inside this subpackage.

You can find implementation of imageset editing in the imageset subpack-
age, layout editing in the layout subpackage, ...

9.4.5 metaimageset subpackage

Classes required for metaimageset parsing, saving and compiling are imple-
mented in this subpackage. This is what ceed-mic (see Section 9.2.2) uses in-
ternally to compile a metaimageset.

9.4.6 propertytree subpackage

UI to inspect and change properties of any class inheriting CEGUI::PropertySet.

9.4.7 settings subpackage

Implements the Settings API, defines basic global settings entries.

61

9.4.8 ui subpackage

Contains .ui files created using Qt Designer. The maintenance script is used to
compile these into Python modules. See Section 10.9 for more info.

9.5 data directory

Contains icons, the splashcreen, stock property mappings, sample CEGUI datafiles
and sample project files.

9.6 doc directory

Contains LYX source code for developer manual, quickstart guide and user
manual. Also contains the PDF versions after ./maintenance build-docs has
been executed (see Section 9.1.1).

62

Chapter 10

Core API

The whole code is divided into folders where the root folder provides basic
reusable functionality (project management, undo view, tab management, . . .)
and the editors themselves are providing editing facilities for various file types.

10.1 TabbedEditor

A base class for editors hosted in a tab. If you are writing new editing func-
tionality for CEED you definitely need to inherit from this class.

10.1.1 Responsibilities

Figure 10.1: tabbed editor responsibilities are highlighted in yellow

The most important part of a TabbedEditor is its widget. The widget represents
the central part in Figure 10.1. TabbedEditors also often add toolbars, dock
widgets and other elements.

63

10.1.2 Life cycle

Each tabbed editor goes through the following cycle:

1. Construction of the class

2. Initialisation

(a) all the supporting widgets get created

(b) the file is loaded and processed

3. Activation

(a) this puts the tabbed editor “on stage”

4. User interaction

5. Deactivation

6. Finalisation

(a) the editor is no longer shown in the interface

7. Destruction

(a) all held data and widgets are destructed

10.1.3 Derived classes

To avoid repeating code and adhere to the DRY principle [15], there are 2 very
important classes that add functionality to TabbedEditor that you want to in-
herit if applicable to avoid reinventing.

UndoStackTabbedEditor

Very useful in case you are already using the Qt’s UndoStack. This connects
all the necessary calls and exposes undo and redo of the undo stack to the rest
of the application.

64

MultiModeTabbedEditor

Useful when you want multiple editing modes. As an example, let us take the
layout editor. It has three modes - visual, code and live preview. You can freely
switch between them and they each offer a different look at the same data. At
any point in time you are viewing/editing in one mode only. Please note that
you must be using UndoStack in this situation as switching modes is an undo
action.

Each mode has its own life cycle and depends on the life cycle of its host
tabbed editor. First the tabbed editor gets on “the stage” and then the editor’s
mode is asked to activate itself.

1 # the host tabbed editor gets constructed and activated

2 A.deactivate ()

3 B.activate ()

4 # the user merrily edits in the B edit mode

Figure 10.2: process of switching from edit mode A to B

The actual mode switch process is a bit more involved because of the ne-
cessity to make mode switch an undoable action. You can see the full imple-
mentation of it in ceed.editors.multi.MultiModeTabbedEditor.slot_currentChanged.

10.2 Undo / Redo

Figure 10.3: example of an undo
stack

One of the cornerstones of CEED is the
ability to undo everything. This is im-
plemented using Qt’s QUndoCommand
class. Each TabbedEditor has its own in-
dependent undo stack, undo commands
are never shared across editors.

10.2.1 Principles

• everything that changes data has to
be an UndoCommand

• all data that undo command stores
in itself must be “independent”,
storing references to widgets would
not work if there is a Destroy-
Command that invalidates them

65

• state switching that would make some
undo commands not applicable have
to be undo commands themselves

10.2.2 Moving in the undo stack

Let us consider the undo stack shown in Figure 10.3. If user clicks the <empty>
line, all the undo commands will get .undo() called in the bottom-up order.
If now the user clicks the Move ’ButtonPushedFill2’ line again, the commands
will get .redo() called in the top-down order. It is important to notice that
the undo commands are always acted upon sequentially and that order of the
calls matter! Some of the commands might not even make any sense if they
are called out of order. Consider a Create Image ’XYZ’ command followed by
Move ’XYZ’. They need to be acted upon in the right order otherwise the Move
command is asked to move a non-existent image.

10.3 Property editing

A lot of CEGUI classes provide basic introspection via property strings. CEED
has a set of classes to reuse when you want to edit properties of widgets or any
other classes that inherit from PropertySet.

10.3.1 Usage

Even though the propertytree subpackage (see Section 9.4.6) gives you access to
its very internals and allows very advanced uses, including using it on classes
that do not even inherit from the CEGUI::PropertySet, only the basic usage
scenarios will be discussed in this document.

66

1 from ceed import propertysetinspector

2 from ceed import mainwindow

3

4 # parent is a QWidget and can be None

5 inspector = propertysetinspector.

PropertyInspectorWidget(parent)

6 self.inspector.ptree.setupRegistry(propertytree.editors

.PropertyEditorRegistry(True)

7 pmap = mainwindow.MainWindow.instance.project.

propertyMap

8 self.inspector.setPropertyManager(propertysetinspector.

CEGUIPropertyManager(pmap))

Figure 10.4: creating a property inspector widget

1 # inspector is a property inspector as created

previously

2

3 inspector.setPropertySets ([propertySetToInspect])

Figure 10.5: inspecting a PropertySet using a property inspector

10.4 Settings API

Whenever you want users to be able to change some value to affect behavior
of the application, consider using the Settings API. You only need to define the
settings entry and the UI that allows changing it will be auto-generated for you.

1 category = settings.createCategory(name = "layout",

label = "Layout editing")

2

3 visual = category.createSection(name = "visual", label

= "Visual editing")

4

5 visual.createEntry(name = "continuous_rendering",

6 type = bool ,

7 label = "Continuous rendering",

8 help = "Check this if you are

experiencing redraw issues ...",

9 defaultValue = False , widgetHint = "

checkbox",

10 sortingWeight = -1

Figure 10.6: defining a settings entry

67

It is recommended to query the settings entry once and keep the reference
stored to avoid having to look it up frequently.

1 entry = settings.getEntry("layout/visual/

continuous_rendering")

2 # entry is a reference to SettingsEntry class

3 # we get the fresh value whenever we use entry.value

later in the code

4 p r i n t ("Continuous rendering is %s" % ("on" i f entry.

value e l s e "off"))

Figure 10.7: using a settings entry

10.5 Action API

Whenever there is an action needed you are advised to use the action API, see
ceed.action module. The actions inherit from QAction and offer the same func-
tionality but shortcuts are handled automatically for the developer, including
UI for the user to remap them.

To use the Action API you have to define your actions first, this is usually
done in a separate file to keep things clean. See editors/imageset/action_decl.py
and editors/layout/action_decl.py. Then you query for this action in your code
and connect your signals to it. You can use the convenience ConnectionMap
to ease mass connects and disconnects.

68

1 cat.createAction(

2 name = "align_hleft",

3 label = "Align &Left (horizontally)",

4 help = "Sets horizontal alignment of all

selected widgets to left.",

5 icon = QtGui.QIcon("icons/layout_editing/

align_hleft.png"))

1 cat.createAction(

2 name = "snap_grid",

3 label = "Snap to &Grid",

4 help = "When resizing and moving widgets ,

if checked this makes sure ...",

5 icon = QtGui.QIcon("icons/layout_editing/

snap_grid.png"),

6 defaultShortcut = QtGui.QKeySequence(

QtCore.Qt.Key_Space)).setCheckable(True

)

Figure 10.8: defining new actions

You can check the shortcut remap UI generated for you in Settings » Short-
cuts.

10.6 Embedded CEGUI

To make sure everything is rendered exactly as it will appear in CEGUI it is
used in the editor. This also ensures that whatever custom assets you have,
they will be usable in the editor exactly as they are in CEGUI itself.

10.6.1 PyCEGUI bindings

As CEGUI is a C++ library, making it accessible from Python is not trivial.
I have written python bindings for CEGUI called PyCEGUI using py++ and
boost::python for this purpose. It is important to realise though that even though
I tried to make it pythonic and reasonably safe, mistreating PyCEGUI can still
cause segfaults and other phenomena usually prevented by using a scripting
language.

10.6.2 Shared CEGUI instance

There is only one CEGUI instance in CEED. This makes tabbed editor switches
slightly slower but CEED uses less memory. The main reason for this design

69

decision is that CEGUI did not have multiple GUI contexts at the time CEED
was being designed.

Furthermore, the shared instance is wrapped in a “container widget” which
provides convenience wrappers. That way developer can avoid dealing with
OpenGL and QGLWidget directly.

1 ceguiContainerWidget = mainwindow.MainWindow.instance.

ceguiContainerWidget

2

3 # parentWidget is the widget that will host the CEGUI

rendering , it cannot be None!

4 ceguiContainerWidget.activate(parentWidget , self.scene)

5 ceguiContainerWidget.setViewFeatures(wheelZoom = True ,

continuousRendering = True)

6

7 # you can then use CEGUI directly through PyCEGUI , the

result will be rendered

8 # to the host widget specified previously

9 PyCEGUI.System.getSingleton ().getDefaultGUIContext ().

setRootWindow(self.rootPreviewWidget)

10

11 # ... rendering , interaction , etc.

12

13 # after your work is done , deactivate the container

widget

14 ceguiContainerWidget.deactivate(self.ceguiPreview)

Figure 10.9: accessing and using the CEGUI instance

Always clean up!

The CEGUI container widget is shared, therefore the whole CEGUI instance
and the default GUIContext are shared. CEGUI resources are not garbage col-
lected, they are created in the C++ world and have to have their life cycles
managed manually. Make sure you always destroy all your widgets and other
resources after use. They will not get cleaned up until the whole editor is
closed!

Beware of name clashes!

Becuase the CEGUI instance is shared there can be name clashes for many
resources - images, animation definitions, ... A good way to circumvent this
is to generate unique games with an integer suffix and hide the fact from the
user.

70

This is what the Animation list editor does internally, for more details see
ceed.editors.animation_list.

10.7 Compatibility layers

Compatibility is only dealt with on data level. The editor itself only supports
one version of each format and layers allow to convert this raw data to other
formats. Here is an example of how to do that:

1 # we want to migrate and imageset from data format "foo

" to "bar"

2 # data is a string containing imageset in "foo" format

3

4 from ceed.compatibility import imageset as compat

5 convertedData = compat.manager.transform("foo", "bar",

data)

There are also facilities to guess types of arbitrary data. See API reference
of CompatibilityManager for more info.

10.7.1 Testing compatibility layers

Running the GUI and loading files manually by clicking is not practical for
compatibility layer development and testing. Use the ceed-migrate executable
instead. See Section 9.2.3.

10.8 Model View (Controller)

As most editing applications we have the MVC paradigm [18]. When I say
something is the model I mean that it encapsulates and contains the data we are
editing. The view on the other hand encapsulates the facility to view the data
we are editing in their current state. The controller allows the user to interact
with the data. Most of the time view meshes with controller as it does in the Qt
world so we are using one class instance for both view and control.

Separating model from view helps make the code more maintainable and
cleaner. It also makes undo command implementation easier.

71

10.9 Qt designer .ui files

Qt designer allows RAD so it pays off to keep as much GUI layout in .ui files
as possible. Whenever you are creating a new interface, consider creating it
with the Qt designer instead of coding it manually.

10.9.1 Compiling

The files have to be compiled into Python modules.

Development mode

The preferred method if you want to continuously develop CEED. Allows au-
tomatic recompilation of all ui files.

1 $ vim ceed/version.py

2 # make sure the DEVELOPER_MODE line is set to True

Figure 10.10: turning the developer mode on

maintenance script

If you only want to compile the ui files rarely you are better off with the main-
tenance script. See Section 9.1.1.

1 ./ maintenance compile -ui-files

Figure 10.11: recompiling ui files via the maintenance script

72

Chapter 11

Editing implementation

11.1 Imageset editing

Lives in the ceed.editors.imageset package. Provides editing functionality for
CEGUI imagesets. Please see the CEGUI imageset format documentation [17]
for more details about the format.

11.1.1 Data model

Classes from the ceed.editors.imageset.elements package are used to model the
data instead of using CEGUI in this editor. The reason is relative simplicity
of the data and big changes to the image API between CEGUI 0.7 and 1.0.
Compatibility layers are used to convert given data to the native format before
they are loaded into the data model. See Section 10.7 for more details.

11.1.2 Undo data

Undo data are implemented using string for image definition reference and
Python’s builtin types to remember geometry.

11.1.3 Multiple modes

It is a multi-mode editor with visual and code modes. The code mode always
uses and displays native CEGUI 1.0 data.

11.1.4 Copy / Paste

Copy paste is implemented using custom MIME type and bytestreams. It is
even possible to copy image definitions across editor instances.

73

11.2 Layout editing

Located in the ceed.editors.layout package. CEGUI Window is used to model the
entire layout hierarchy. We use WidgetManipulator class to add serialisation
(for undo/redo), resizing handles and more to windows. It is a multimode
editor with visual, code and live preview modes. The live preview mode does
no editing, instead it just views the current layout and allows user to interact
with it to test it.

11.2.1 Data model

Layout editing operates of widget hiearchies, a data model natively imple-
mented in CEGUI that we use directly. Since CEGUI does not have global
window names since version 1.0 we do not even have to worry about name
clashes.

11.2.2 Undo data

Undo data are implemented using strings for widget path reference and wid-
get properties are serialised using Python’s builtin types.

LookNFeel property caveat

When you change the LookNFeel property the auto child widgets get destroyed
and constructed anew. This breaks undo history and is not allowed at the mo-
ment. I don’t it is worth the effort to support this. Either way we would have
to “alter history” in some cases. Changing it in code mode will of course work
because the entire hierarchy will be reconstructed from scratch.

WindowRenderer property caveat

Similar to the LookNFeel case it makes changes to the window that break undo
history. Right now it is disallowed to change it from the editor. Changing it
in code mode will of course work because the entire hierarchy will be recon-
structed from scratch.

11.2.3 Multiple modes

Visual, Code and Live preview modes are provided. Code is a simple XML edit-
ing mode but the other two are implemented using embedded CEGUI.

74

11.2.4 Copy / Paste

Copy paste is implemented using custom MIME type and bytestreams. It is
even possible to copy widget hierarchies across editor instances.

75

11.3 Animation editing

Located in ceed.editors.animation_list package. We use wrappers to deal with
the fact that CEGUI has no model for a list of animations.

KeyFrames had to have indices added because comparing floats for equal-
ity is unreliable. So in the end we sort all keyframes by position and figure out
their indices from that. To avoid placing two keyframes at the exact same posi-
tion we add a small epsilon until we have no clashes whenever we encounter
this possibility.

76

Chapter 12

Contributing

12.1 Coding style

CEED does not follow the PEP8 style recommendation when it comes to method
and variable naming. The reason I chose to use camelCase for methods and
variables is that PySide and CEGUI both use that and CEED calls a lot of meth-
ods form these 2 APIs. The code looked much better with camelCase naming.

Use the following rules for all contributed code to CEED:

• use 4 spaces for indentation

• use CamelCase for class naming

• do not use wildcard imports 1

• use camelCase for method and variable naming

• document methods and classes with the triple quote docstyle syntax

• comment all other things with # prefix only

12.2 Communication channels

You can reach the CEGUI team using:

• IRC: #cegui on irc.freenode.net2

• email: team@cegui.org.uk

1from package import * cannot appear anywhere in the code.
2See http://freenode.net for more information about the network.

77

http://freenode.net

12.3 DVCS - forking

Create a fork of http: // crayzedsgui. hg. sourceforge. net: 8000/ hgroot/
crayzedsgui/ CEED on http://bitbucket.org or elsewhere. Start each feature
or substantial fix in a separate branch, this makes it easy to review and possibly
reject some parts without rejecting everything. When you are finished with
your branch make sure you merge all upstream changes if any. Having to deal
with merge conflicts makes the reviewers more likely to postpone integration.
After all of this is done, simply contact upstream developer to merge your
changes into the main repository. You can usually reach someone through IRC
(freenode/#cegui), mantis bug tracker or email (team@cegui.org.uk).

12.4 The old fashioned way - patches

You can alternatively just send unified diff patches by email if you so desire.
Use the team@cegui.org.uk email address. Make sure you state what the patch-
set is based on.

78

http://crayzedsgui.hg.sourceforge.net:8000/hgroot/crayzedsgui/CEED
http://crayzedsgui.hg.sourceforge.net:8000/hgroot/crayzedsgui/CEED
http://bitbucket.org

Part V

Conclusion

79

Chapter 13

Statistics and graphs

13.1 Adoption

Overall I think CEED has been fairly successful with roughly 2500 downloads
in total [2] as of 22nd July 2012. Three professional proprietary game develop-
ment studios reported that they were using it and were a valuable source of
bug reports and feedback. It has also been packaged for ArchLinux commu-
nity repository [1], I sadly have no statistics of usage from this source.

Figure 13.1: number of downloads per month on SourceForge [2]

The download graph does not show any increasing trend which suggests
that unstable editing application does not convince new users to migrate to
CEGUI, the pool of potential users remains more or less constant.

Platforms of users

Windows has been very decisively the most common platform of CEED users,
88% of all users [2] downloading CEED from SourceForge had Windows. This
is not surprising as the target audience are artists and Windows is the market
leader in desktop operating systems at the moment.

80

Figure 13.2: platforms of CEED users

GNU/Linux took second place,
surprisingly miles ahead of Macin-
tosh. The most likely explanation
is that MacOS X standalone builds
of CEED were not provided before
snapshot8 release. The friction of
building all the dependencies proba-
bly prevented users from trying the
application.

Countries of users

China is dominating the chart with 746 CEED downloads in total [2] as of 22nd
July 2012. This is very surprising to me, I have not heard from any Chinese
user as far as I know. I do not think it is some sort of a measuring mistake
because I know of many projects in China that use CEGUI, yet we never hear
from the developers. The most probable explanation is that there are cultural
and language barriers that prevent users from interaction with the upstream.

United States took second place with 341 downloads in total, Germany took
third with 208 downloads in total.

13.2 Development

13.2.1 Timeline

My goal was to proceed at a steady pace, focusing on bug reports and issues.
The graph in Figure 13.3 shows that there were next to no drastic rewrites
and development proceeded at a predictable rate. The last four months of
development were focused on integration testing and bug fixing. Very few
features were added during that time.

81

Figure 13.3: lines of code timeline (blue: code, red: comments, green: blank
space) [3]

The graph in Figure 13.4 shows a few alarming spikes in development. I
believe some of them were caused by me merging community contributions,
several of which were tens of commits at a time. Brief pauses of development
were also caused by time constrains.

Figure 13.4: commits per month [3]

82

13.2.2 Contributors

Figure 13.5: contributor commit breakdown including Martin Preisler [3]

Figure 13.6: contributor commit breakdown excluding Martin Preisler [3]

Despite me providing a decisive majority of code, the entire application
was a collaboration of many authors around the world.

We can see that external contributors were submitting commits with a slightly
increasing trend. Four developers account for a staggering 99% of all commits.
We have to consider the fact that merging and branch closing commits were
done solely by Martin Preisler, so the percentage of his contribution might be
a couple per cent lower.

83

13.3 Codebase

Consists of 27,874 lines of code [3] as of 22nd July 2012. 17,036 are code lines,
5,110 are comment lines and 5,728 are blank. The COCOMO model estimates
4 person-years of effort and values the project at a generous $210,759 with
programmer annual salary of $55,000 [3]. It is important to note that the CO-
COMO model typically overvalues young projects [16].

13.4 Issue tracking

As of 22nd July 2012 a total of 291 issues have been reported. 205 of them are
marked as resolved. The most common category of issues is the “General”
category with 114 issues reported. Layout editing takes second place with 91
issues. [4]

84

Chapter 14

Future development

14.1 Unfinished features

Animation editing

Some of animation editing is implemented but I got sidetracked with all the
issues reported and could not finish it in time. There is a lot of user interface
work to do there but the core basics are implemented.

Better shortcut implementation

Shortcuts are application-wide at the moment, meaning they are not tied to
a widget and do not need focus in a particular widget. This leads to various
issues like CTRL+S saving to a file and moving currently selected image def-
inition down in imageset editing. This should be fixed by requiring shortcuts
to be bound to a widget and only triggered when such widget has keyboard
focus.

Support for TabControl in layout editor

Despite there being support for AutoWindows in general, TabControl can still
cause CEED to crash and is generally not supported.

14.2 Software is never truly finished

I expect to get even more users with its first stable release that shall happen
after CEGUI 1.0 release. Many teams are worried about using it as part of their
pipeline when it has not been declared stable yet.

85

As it is free software I am expecting more contributors and more features
in the future. There is still much to implement and I do not think CEED will
ever be proclaimed as finished.

86

Nomenclature

CEGUI CrazyEddie’s GUI System

EULA End User License Agreement

Falagard Name of CEGUI’s skinning system

GPU Graphics Processing Unit

GUI Graphical User Interface

LookNFeel CEGUI term for widget skinning data

NDA non-disclosure agreement

OOP Object Oriented Programming

RAD Rapid Application Development

TTF True Type Font

UDim Unified Dimension

UI User Interface

WYSIWYG What You See Is What You Get

87

Bibliography

[1] AUR CEED page. URL: http://aur.archlinux.org/packages.php?ID=
60094.

[2] CEED SourceForge download page, . URL: http://sourceforge.net/
projects/crayzedsgui/files/CEED/.

[3] Ohloh page for CEED, . URL: http://www.ohloh.net/p/CEED.

[4] CEGUI mantis tracker, . URL: http://cegui.org.uk/mantis.

[5] CEGUI website, . URL: http://cegui.org.uk.

[6] GIMP rectangle selection tool documentation. URL: http://docs.gimp.
org/en/gimp-tool-rect-select.html.

[7] Mantis website. URL: http://www.mantisbt.org/.

[8] About page on the MyGUI website. URL: http://mygui.info/#about.

[9] Ogre3D website. URL: http://ogre3d.org.

[10] The original CEED forum thread. URL: http://cegui.org.uk/phpBB2/
viewtopic.php?f=15&t=5318.

[11] PySide website. URL: http://www.pyside.org/.

[12] ropevim website. URL: http://rope.sourceforge.net/ropevim.html.

[13] Summoning Wars website. URL: http://sumwars.org.

[14] Worldforge website. URL: http://worldforge.org.

[15] Andrei Alexandrescu and Herb Sutter. C++ Coding Standards: 101 Rules,
Guidelines, and Best Practices. 2004. ISBN 978-0321113580.

[16] Barry W. Boehm. Software Cost Estimation with COCOMO II. 2000. ISBN
978-0137025763.

88

http://aur.archlinux.org/packages.php?ID=60094
http://aur.archlinux.org/packages.php?ID=60094
http://sourceforge.net/projects/crayzedsgui/files/CEED/
http://sourceforge.net/projects/crayzedsgui/files/CEED/
http://www.ohloh.net/p/CEED
http://cegui.org.uk/mantis
http://cegui.org.uk
http://docs.gimp.org/en/gimp-tool-rect-select.html
http://docs.gimp.org/en/gimp-tool-rect-select.html
http://www.mantisbt.org/
http://mygui.info/#about
http://ogre3d.org
http://cegui.org.uk/phpBB2/viewtopic.php?f=15&t=5318
http://cegui.org.uk/phpBB2/viewtopic.php?f=15&t=5318
http://www.pyside.org/
http://rope.sourceforge.net/ropevim.html
http://sumwars.org
http://worldforge.org

[17] CEGUI development team. Imageset xml format specification. http://

www.cegui.org.uk/docs/current/xml_imageset.html.

[18] Alan Ezust. An Introduction to Design Patterns in C++ with Qt 4. 2006. ISBN
978-8131713266.

[19] Martin Fleurent. AUTHORS file in ceimageseteditor tarball. URL: http:
//prdownloads.sourceforge.net/crayzedsgui/CEImagesetEditor-0.

7.1.tar.gz?download.

[20] Patrick Kooman. AUTHORS.txt in celayouteditor tarball. URL: http:
//prdownloads.sourceforge.net/crayzedsgui/CELayoutEditor-0.7.

1.tar.gz?download.

[21] Mark Summerfield. Rapid GUI Programming with Python and QT: The
Definitive Guide to PyQt Programming. 2007. ISBN 978-0132354189.

[22] Anthony Tuininga. cxFreeze documentation. http://cx_freeze.

readthedocs.org/en/latest/index.html.

89

http://www.cegui.org.uk/docs/current/xml_imageset.html
http://www.cegui.org.uk/docs/current/xml_imageset.html
http://prdownloads.sourceforge.net/crayzedsgui/CEImagesetEditor-0.7.1.tar.gz?download
http://prdownloads.sourceforge.net/crayzedsgui/CEImagesetEditor-0.7.1.tar.gz?download
http://prdownloads.sourceforge.net/crayzedsgui/CEImagesetEditor-0.7.1.tar.gz?download
http://prdownloads.sourceforge.net/crayzedsgui/CELayoutEditor-0.7.1.tar.gz?download
http://prdownloads.sourceforge.net/crayzedsgui/CELayoutEditor-0.7.1.tar.gz?download
http://prdownloads.sourceforge.net/crayzedsgui/CELayoutEditor-0.7.1.tar.gz?download
http://cx_freeze.readthedocs.org/en/latest/index.html
http://cx_freeze.readthedocs.org/en/latest/index.html

Appendix A

CD attachment

A.1 License information

Files stored on the CD are freely redistributable. See COPYING and *-COPYING
files on the CD for more info.

A.2 Directory structure

README.txt information about contents of the CD

COPYING licensing of CEED

*-COPYING licensing of libraries bundled with standalone builds

ceed-thesis.pdf digital form of this document

win32/ Windows standalone build of the application

osx/ MacOS X standalone build of the application

src/CEED/ source code of CEED including Mercurial data with full history

src/CEED/doc/user-manual-src LYX sources for the user manual

src/CEED/doc/developer-manual-src LYX sources for the developer manual

src/cegui_mk2/ MIT-licensed source code of CEGUI used to compile the builds

src/ceed-thesis/ LYX sources of the thesis itself, figures’ imagery

90

	I Introduction
	Why editing tools?
	What is CEGUI?
	History
	Philosophy
	Resources
	Imageset
	Font
	Layout
	Animation
	Scheme

	Widgets
	Foundation
	Widgets are named elements
	Every tree starts with a root
	Unified dimensions (UDim)
	Positioning
	Sizing

	II Development
	Planning phase
	Previous CEGUI tools
	CEImagesetEditor
	CELayoutEditor

	Related non-CEGUI tools
	Qt designer
	Glade
	MyGUI Layout Editor

	Design goals
	Target audience
	Cornerstone requirements
	Relaxed requirements

	Programming phase
	Technologies used
	Tools
	Version control
	Code editing
	Bug tracking and planning
	Static analysis

	Initial stages
	Engaging the community
	List of contributors

	Release early, release often
	Early adopters

	III User Manual
	Prerequisites
	Hardware and software requirements
	Knowledge prerequisites
	Installation
	Source tarball
	Standalone executable (Win32)
	.app bundle (MacOS X)

	Working with the application
	The basics
	Main interface
	Multi tab editing
	Multi mode editing
	Copy / Paste
	Project manager
	File manager
	Resizable rectangle
	Zooming
	Undo and Redo functionality
	Compatibility layers

	Creating a project
	Creating a project file
	Project settings

	Imageset editing
	Overview
	Imageset properties
	Moving and resizing image definitions
	Deleting image definitions
	The property box
	Editing image definition offsets
	Selecting overlapping image definitions
	The code mode

	Layout editing
	Overview
	Moving and sizing widgets
	Deleting widgets
	Property editing
	Reparenting widgets
	Live preview
	Custom widgets
	The code mode

	Command line
	ceed-gui
	ceed-migrate
	ceed-mic

	Settings
	Applying changes
	Back to default
	Shortcuts

	Further help
	Common issues
	Getting support
	Help CEED
	Report bugs
	Help with documentation
	Help with development
	Donate money

	IV Developer Manual
	Prerequisites
	Knowledge requirements
	Getting the source code
	Branches and Tags

	Starting without installation

	Directory structure
	Top directory
	maintenance script
	perform-pylint
	setup.py
	cx_Freezer.py
	copyright related

	bin directory
	ceed-gui
	ceed-mic
	ceed-migrate
	runwrapper.sh

	build directory
	ceed directory
	action subpackage
	cegui subpackage
	compatibility subpackage
	editors subpackage
	metaimageset subpackage
	propertytree subpackage
	settings subpackage
	ui subpackage

	data directory
	doc directory

	Core API
	TabbedEditor
	Responsibilities
	Life cycle
	Derived classes

	Undo / Redo
	Principles
	Moving in the undo stack

	Property editing
	Usage

	Settings API
	Action API
	Embedded CEGUI
	PyCEGUI bindings
	Shared CEGUI instance

	Compatibility layers
	Testing compatibility layers

	Model View (Controller)
	Qt designer .ui files
	Compiling

	Editing implementation
	Imageset editing
	Data model
	Undo data
	Multiple modes
	Copy / Paste

	Layout editing
	Data model
	Undo data
	Multiple modes
	Copy / Paste

	Animation editing

	Contributing
	Coding style
	Communication channels
	DVCS - forking
	The old fashioned way - patches

	V Conclusion
	Statistics and graphs
	Adoption
	Development
	Timeline
	Contributors

	Codebase
	Issue tracking

	Future development
	Unfinished features
	Software is never truly finished

	CD attachment
	License information
	Directory structure

